An enema administration is a technique used to stimulate stool evacuation The process helps push waste out of the rectum when you cannot do so on your own
The missing question is:
<em>What is the percent efficiency of the laser in converting electrical power to light?</em>
The percent efficiency of the laser that consumes 130.0 Watt of electrical power and produces a stream of 2.67 × 10¹⁹ 1017 nm photons per second, is 1.34%.
A particular laser consumes 130.0 Watt (P) of electrical power. The energy input (Ei) in 1 second (t) is:

The laser produced photons with a wavelength (λ) of 1017 nm. We can calculate the energy (E) of each photon using the Planck-Einstein's relation.

where,

The energy of 1 photon is 6.52 × 10⁻²⁰ J. The energy of 2.67 × 10¹⁹ photons (Energy output = Eo) is:

The percent efficiency of the laser is the ratio of the energy output to the energy input, times 100.

The percent efficiency of the laser that consumes 130.0 Watt of electrical power and produces a stream of 2.67 × 10¹⁹ 1017 nm photons per second, is 1.34%.
You can learn more about lasers here: brainly.com/question/4869798
Answer:
4.14 x 10²⁴ molecules CO₂
Explanation:
2 C₄H₁₀ + 13 O₂ --> 8 CO₂ + 10 H₂O
To find the number of CO₂ molecules, you need to start with 100 grams of butane (C₄H₁₀), convert to moles (using the molar mass), convert to moles of CO₂ (using coefficients from equation), then convert to molecules (using Avagadro's number). The molar mass of C₄H₁₀ is calculated using the quantity of each element (subscript) multiplied by the number on the periodic table. The ratios should be arranged in a way that allows for units to be cancelled.
4(12.011g/mol) + 10(1.008 g/mol) = 58.124 g/mol C₄H₁₀
100 grams C₄H₁₀ 1 mol C₄H₁₀ 8 mol CO₂
-------------------------- x ---------------------- x ---------------------
58.124 g 2 mol C₄H₁₀
6.022 x 10²³ molecules
x ------------------------------------ = 4.14 x 10²⁴ molecules CO₂
1 mol CO₂
Answer: Gunpowder
Explanation:
Gunpowder is made by mixing potassium nitrate with two fuels (atoms that can combine with oxygen atoms and release energy), carbon (charcoal) and sulfur. The oxygen atoms leave the nitrates and move onto the carbon and sulfur atoms, releasing a buttload of energy.
Answer:
38.9 grams of 
Explanation:
0.187 mol BaCl2 x 
0.187 m x 208 g/m
0.187 x 208 g
38.896 g --> 38.9 g BaCl2