Answer:
0.12 M
Explanation:
Step 1: Write the balanced equation
NaOH + HCl ⇒ NaCl + H₂O
Step 2: Calculate the reacting moles of NaOH
10 mL of a 0.30 M NaOH solution react.

Step 3: Calculate the reacting moles of HCl
The molar ratio of NaOH to HCl is 1:1. The reacting moles of HCl are 1/1 × 3.0 × 10⁻³ mol = 3.0 × 10⁻³ mol.
Step 4: Calculate the concentration of HCl
3.0 × 10⁻³ mol of HCl are in 25 mL of solution.

Answer: This is a list of the seven diatomic elements. The seven diatomic elements are:
Hydrogen (H2)
Nitrogen (N2)
Oxygen (O2)
Fluorine (F2)
Chlorine (Cl2)
Iodine (I2)
Bromine (Br2)
All of these elements are nonmetals, since the halogens are a special type of nonmetallic element. Bromine is a liquid at room temperature, while the other elements all gases under ordinary conditions. As the temperature is lowered or pressure is increased, the other elements become diatomic liquids.
Astatine (atomic number 85, symbol At) and tennessine (atomic number 117, symbol Ts) are also in the halogen group and may form diatomic molecules. However, some scientists predict tennessine may behave more like a noble gas.
While only these seven elements routinely form diatomic molecules, other elements can form them. However, diatomic molecules formed by other elements are not very stable, so their bonds are easily broken.
How to Remember the Diatomic Elements
The elements ending with "-gen" including halogens form diatomic molecules. An easy-to-remember mnemonic for the diatomic elements is: Have No Fear Of Ice Cold Beer
Explanation:
SORRY if you don't understand!
The melting point would decrease
Answer:
561 g P₂O₃
Explanation:
To find the mass of P₂O₃, you need to (1) convert moles H₃PO₃ to moles P₂O₃ (via mole-to-mole ratio from equation coefficients) and then (2) convert moles P₂O₃ to grams P₂O₃ (via molar mass). It is important to arrange the ratios/conversions in a way that allows for the cancellation of units. The final answer should have 3 sig figs to match the amount of sig figs in the given value.
Atomic Mass (P): 30.974 g/mol
Atomic Mass (O): 15.998 g/mol
Molar Mass (P₂O₃): 2(30.974 g/mol) + 3(15.998 g/mol)
Molar Mass (P₂O₃): 109.942 g/mol
1 P₂O₃ + 3 H₂O -----> 2 H₃PO₃
10.2 moles H₃PO₃ 1 mole P₂O₃ 109.942 g
---------------------------- x -------------------------- x ------------------- = 561 g P₂O₃
2 moles H₃PO₃ 1 mole