Answer:
The energy of these two photons would be the same as long as their frequencies are the same (same color, assuming that the two bulbs emit at only one wavelength.)
Explanation:
The energy
of a photon is proportional to its frequency
. The constant of proportionality is Planck's Constant,
. This proportionality is known as the Planck-Einstein Relation.
.
The color of a beam of visible light depends on the frequency of the light. Assume that the two bulbs in this question each emits light of only one frequency (rather than a mix of light of different frequencies and colors.) Let
and
denote the frequency of the light from each bulb.
If the color of the red light from the two bulbs is the same, those two bulbs must emit light at the same frequency:
.
Thus, by the Planck-Einstein Relation, the energy of a photon from each bulb would also be the same:
.
Note that among these two bulbs, the brighter one appears brighter soley because it emits more photons per unit area in unit time. While the energy of each photon stays the same, the bulb releases more energy by emitting more of these photons.
Answer:
The distance from the radio station is 0.28 light years away.
Solution:
As per the question:
Distance, d = 4 ly
Frequency of the radio station, f = 854 kHz = 
Power, P = 50 kW = 

Now,
From the relation:
P = nhf
where
n = no. of photons/second
h = Planck's constant
f = frequency
Now,

Area of the sphere, A = 
Now,
Suppose the distance from the radio station be 'r' from where the intensity of the photon is 



Now,
We know that:
1 ly = 
Thus

Answer:
Line the numbers from smallest to largest the subtract the smallest from the largest numbers.
Explanation:
<span>Cells with similar preferences are arranged closer together in the auditory cortex. </span>That statement presented is True. Auditory cortex is in the temporal lobe. It processes auditory information in human and as well as other invertebrates. The neurons inside the auditory cortex are organized depends on the frequency of the sound.
Answer:
The answer is the second option.
Explanation:
This is a higher temperature than Onnes's experiment, and it will allow for a broader use of superconductors.