Answer:
The effect of gravity extends from each object out into space in all directions, and for an infinite distance. However, the strength of the gravitational force reduces quickly with distance. Humans are never aware of the Sun's gravity pulling them because the pull is so small at the distance between the Earth and Sun.
2H2O->2H2+O2
This balanced chemical equation represents the decomposition of water into hydrogen gas and oxygen gas
Answer:
1.been both -ve charged or both +be charged particles
2. 3.52mC
Explanation:
For the charge particle to cause an extension or movement of the string from its unrestrained position they would have been both -ve charged or both +be charged particles that's because like charges repel.
Now the Force sustain by the extended string is
F = Ke;
Where K is the force constant of the string, 320 N/m
e is the extension,0.033 m
F = 320 × 0.033 =10.56N
2.But according to columns law of charge;
F = kQ1 Q2
But Q1=Q2{ since the charge are of the same magnitude}.
Hence F = KQ^2
Where K is columns constant =9×10^9F/m
Hence Q=√F/K
Q= √10.56/9×10^9
=3.52×10^-3C
= 3.52mC
3) Earth is about 150 million km from the Sun, and the apparent brightness of the Sun in our sky is about 1,300 watts per square meter. Determine the apparent brightness we would measure for the Sun if we were located five times Earth's distance from the Sun. Answer: The Sun would appear 1/25 times as bright.
Use the kinematics equation:
d = vt + 1/2at^2.
In this problem,
v = 15 m/s.
a = 3 m/s^2,
t = 10 s,
So:
d = 15(10) + 1/2*(3)*(10^2) = 300 meters