Answer:
2, 4, and 5
Step-by-step explanation:
There are three states that a system of linear equations can be in. Intersecting, parallel, and overlapping. Intersecting results in one solution, parallel results in none, and overlapping makes all solutions that are on the line correct. The question says that there are infinite solutions, so it must be overlapping. We can immediately rule out the first one because only points that lie on the line can be solutions. Since we know that the system has all of the solutions shown, 2 has to be true. 3 is the same idea. When you plug the x value (20) into the equation, you get the y value (58) meaning that it must be true. 5 is stated above.
Answer:
x = 11
Step-by-step explanation:
By using angle bisector theorem,
"Bisector of an angle divides the opposite side of the angle into two segments such that they are proportional to the other two sides.


8(x - 4) = 4(x + 3)
8x - 32 = 4x + 12
8x - 4x = 32 + 12
4x = 44
x = 11
Therefore, value of x is 11.
Step-by-step explanation:
The value of sin(2x) is \sin(2x) = - \frac{\sqrt{15}}{8}sin(2x)=−
8
15
How to determine the value of sin(2x)
The cosine ratio is given as:
\cos(x) = -\frac 14cos(x)=−
4
1
Calculate sine(x) using the following identity equation
\sin^2(x) + \cos^2(x) = 1sin
2
(x)+cos
2
(x)=1
So we have:
\sin^2(x) + (1/4)^2 = 1sin
2
(x)+(1/4)
2
=1
\sin^2(x) + 1/16= 1sin
2
(x)+1/16=1
Subtract 1/16 from both sides
\sin^2(x) = 15/16sin
2
(x)=15/16
Take the square root of both sides
\sin(x) = \pm \sqrt{15/16
Given that
tan(x) < 0
It means that:
sin(x) < 0
So, we have:
\sin(x) = -\sqrt{15/16
Simplify
\sin(x) = \sqrt{15}/4sin(x)=
15
/4
sin(2x) is then calculated as:
\sin(2x) = 2\sin(x)\cos(x)sin(2x)=2sin(x)cos(x)
So, we have:
\sin(2x) = -2 * \frac{\sqrt{15}}{4} * \frac 14sin(2x)=−2∗
4
15
∗
4
1
This gives
\sin(2x) = - \frac{\sqrt{15}}{8}sin(2x)=−
8
15
Answer:
The first one.
Step-by-step explanation:
The first one. 7x² times 2x = 14x³
Answer:
32.5 feet
Step-by-step explanation:
This situation forms a right triangle. We are given the distance from the base of the tower (long leg of the triangle) and are asked to find the height (short leg of the triangle).
With this information, we can use the tan ratio, opposite over adjacent, to find the height of the tower.
tan 18 = 
Multiply each side by 100:
(100) tan 18 = x
Simplify and round to the nearest tenth:
32.49 = x
32.5 = x
So, the height of the tower is approximately 32.5 feet