The principle that requires that a chemical equation be balanced would be the law of definite proportions. It <span>states that a given chemical compound always contains its component elements in fixed ratio (by mass) and does not depend on its source and method of preparation. Hope this answers the question.</span>
<u>Answer:</u> The temperature at which the food will cook is 219.14°C
<u>Explanation:</u>
To calculate the final temperature of the system, we use the equation given by Gay-Lussac Law. This law states that pressure of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial pressure and temperature of the gas.
are the final pressure and temperature of the gas.
We are given:

Putting values in above equation, we get:

Converting the temperature from kelvins to degree Celsius, by using the conversion factor:


Hence, the temperature at which the food will cook is 219.14°C
Lesser. atomic number means proton number
Answer:
the concentration of the reactants
the temperature in heating