<h3>
Answer:</h3>
251 mol Xe
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
[Given] 1.51 × 10²⁶ atoms Xe
[Solve] moles Xe
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
- [DA] Set up:

- [DA] Multiply/Divide [Cancel out units]:

<u>Step 4: Check</u>
<em>Follow sig fig rule and round. We are given 3 sig figs.</em>
250.747 mol Xe ≈ 251 mol Xe
<h3>
Answer:</h3>
0.90J/g°C
<h3>
Explanation:</h3>
We are given:
Mass of Aluminium = 10 g
Quantity of heat = 677 Joules
Change in temperature = 125°C - 50°C
= 75°C
We are required to calculate the specific heat capacity of Aluminium
But, Quantity of heat = Mass × specific heat × Change in temperature
Q = mcΔt
Rearranging the formula;
c = Q ÷ mΔt
= 677 J ÷ (10 g × 75°C)
= 677 J ÷ 750g°C
= 0.903 J/g°C
= 0.90J/g°C
Thus, the specific heat capacity of Aluminium is 0.90J/g°C
Riley can either change the surface area of the object or can change the slipperiness of the material.
Answer:
a.) 22.4 L Ne.
Explanation:
It is known that every 1.0 mol of any gas occupies 22.4 L.
For the options:
<em>It represents </em><em>1.0 mol of Ne.</em>
<em />
using cross multiplication:
1.0 mol occupies → 22.4 L.
??? mol occupies → 20 L.
The no. of moles of (20 L) Ar = (1.0 mol)(20 L)/(22.4 L) = 0.8929 mol.
using cross multiplication:
1.0 mol occupies → 22.4 L.
??? mol occupies → 2.24 L.
<em>The no. of moles of (2.24 L) Xe </em>= (1.0 mol)(2.24 L)/(22.4 L) = <em>0.1 mol.</em>
- So, the gas that has the largest number of moles at STP is: a.) 22.4 L Ne.
When y equals 5, x is 104.3
When y equals 3 then x is 108.3
<em><u>Solution:</u></em>
<em><u>Given expression is:</u></em>

<h3><u>If y equals 5 what is x ?</u></h3>
Substitute y = 5 in given expression
5 = 57.15 - 0.5(x)
5 = 57.15 - 0.5x
0.5x = 57.15 - 5
0.5x = 52.15
Divide both sides by 0.5
x = 104.3
Thus when y equals 5, x is 104.3
<h3><u>If y = 3 what is x ?</u></h3>
Substitute y = 3 in given expression
3 = 57.15 - 0.5(x)
3 = 57.15 - 0.5x
0.5x = 57.15 - 3
0.5x = 54.15
Divide both sides by 0.5
x = 108.3
Thus when y equals 3 then x is 108.3