Give me a thanks I been helped a lot of people and non of them is thanks me.
<span>Gold have a single outer electron. This seems disadvantageous, energy-wise, until you look at the orbitals the electrons are in. The lone electron is in an S-orbital. This orbital is thus half full (since s-orbitals can contain 2 electrons), whereas all the other inner orbitals in silver and gold are filled, and hence exceptionally stable. After a full orbital, the next most stable orbital is a half full one. </span>
Since Titan orbits roughly along Saturn's equatorial plane, and Titan's tilt relative to the sun is about the same as Saturn's, Titan's seasons are on the same schedule as Saturn's—seasons that last more than seven Earth years, and a year that lasts 29 Earth years.
a.) Asp and Lys
Asp will elute first from the column because it has less positively charged functional groups than Lys.
b.) Arg and Met
Met will elute first from the column because it has less positively charged functional groups than Lys.
c.) Glu and Val
Glu will elute first from the column because it has more negativity functional groups than Lys and will be not be much retained by the -SO₃⁻ groups from the ion-exchange coloumn.
d.) Gly and Val
Gly will elute first from the column because Lys have a longer alkyl chain which will be attracted by the strongly hydrophobic backbone for the resin.
e.) Ser and Ala
Ser will be eluted first from the column because Ala alkyl chain will be more attracted by the strongly hydrophobic backbone for the resin. Ser have an -OH group which will decrease the hydrophobicity of the alkyl chain and will not be so much retained on the column.
The correct answer is:
b: Heluim
Explanation:
The caffeine contains:
carbon , nitrogen , oxygen ,
hydrogen.
Caffeine is a primary nervous system energizer of the methylxanthine class. It is the world's most universally consumed psychoactive drug. Unlike many other psychoactive elements, it is fair and unlimited in nearly all parts of the world. Caffeine can be arranged as an alkaloid, a term used for substances originated as end results of nitrogen metabolism in some plants.