The epicenter was located somewhere on a circle centered at Recording station X, with a radius of 250 km.<span>
</span>
Answer:
The correct answer is 187.7 J/Jg.
Explanation:
The formula for finding the specific heat of fusion is,
Specific heat of fusion = Q/m
Here Q is the heat energy added, signified in kJ, and m is the mass of the object in kg.
Based on the given information, the heat energy added or Q is 869 kJ and the mass of the ice is 4.6 Kg
Now putting the values in the formula we get,
Specific heat of fusion = Q/m
Specific heat of fusion = 863 kJ / 4.6 Kg = 187.7 J/Kg
Write as a proportion, showing the relationship of both given information:
68.0g 0.3g
---------- = -----------
1L x ( your answer)
Cross multiply: 68.0g× X = 0.3g × 1L
68.0g (X)= 0.3g/L
Solve for X by dividing both sides by 68.0 g
68.0g (X) = 0.3g/L
------------- ------------------
68.0g 68.0g
Then enter into calculator 0.3/68 and that will be your solution. Make sure you round up.
Answer:
I would say that the mutation has no effect on the organism, as it doesn't help or harm it.
hope this helps :)
Explanation:
Answer:
526g is the mass of this sample
Explanation:
To solve this question we must, as first, find the <em>molar mass </em>of Al₂(Cr₂O₇)₃ using the periodic table. The molar mass is defined as the mass of this compound per mole. With this value we can find the mass in 0.750 moles as follows:
<em>Molar mass Al₂(Cr₂O₇)₃</em>
2Al = 2*26.98g/mol = 53.96g/mol
6 Cr = 6*51.9961g/mol = 311.9766g/mol
21 O = 21*15.999g/mol = 335.979g/mol
53.96g/mol + 311.9766g/mol + 335.979g/mol
= 701.9156g/mol
The mass of 0.750 moles is:
0.750 moles * (701.9156g / mol) =
<h3>526g is the mass of this sample</h3>