Answer :
Example of polar covalent molecules H-O-H(water), ammonia
Explanation:
The presence of intermolecular Hydrogen bonding makes the boiling point of water unexpectedly high, and the polar covalent nature makes it dissolve polar solute/compound
Velocity = 3.61 m/s
<h3>Further explanation</h3>
Given
mass of child = 35 kg
mass of sled = 5 kg
Kinetic energy = 260 J
Required
velocity
Solution
Energy because its motion is expressed as Kinetic energy (KE) which can be formulated as:
KE = 1/2.mv²
mass of object :
= mass child + mass sled
= 35 kg + 5 kg
= 40 kg
Input the value :
v²=KE : 1/2.m
v²= 260 : 1/2.40 kg
v²=13
v=3.61 m/s
First, we will get the average pH of the two given values:
average pH = (6.4+8) / (2) = 7.2
At this average pH, the concentration of the acid from the phenol red is equal to the concentration of the base.
pH = 7.2
[H+] = 10^(-7.2) = 6.3 * 10^-8
Phenol red has the general formula HA, this gives us:
HA <.......> H+ + A-
At pH = 7.2, [H+] = [A-]
<span>Ka = [H+][A-]/ [HA]
</span>Ka = [H+] = <span>6.3 x 10^-8</span>
Answer:
The molality of the solution is 0.3716 mol/kg
The number of moles of solute is 0.0157 mol
The molecular weight of the solute is 129.30 g/mol
The molar mass of the solute is 129.32 g/mol
Explanation:
m (molality of the solution) = ∆T/Kf = (43.17 - 40.32)/7.67 = 0.3716 mol/kg
Number of moles of solute = molality × mass of solvent in kilogram = 0.3716 × 0.04219 = 0.0157 mol
Molecular weight of solute = mass/number of moles = 2.03/0.0157 = 129.3 g/mol
When Kf = 7.66 °C.kg/mol
Molar mass = 2.03 ÷ (2.85/7.66 × 0.04219) = 129.32 g/mol