Answer:
y = -0.42 m
1.16*10^-4 T(-k)
-1.73*10^4 N/C (j)
Explanation:
(a) Above the pair of wires, The field out of the page of the 50 A current will be stronger than the (—k) field of the 30 A current (k).
Between the wires, both produce fields into the page.
below the wires, y = - | y |
B = u_o*I/2πr (-k) + u_o*I/2πr (k)
0 = u_o/2πr[50/ | y |+0.28 (-k) + 30/| y | (k) ]
50 | y | = 30(| y | + 0.28)
| y | = -y
-50 y = 30*(0.28 - y)
y = -0.42 m
b) B = u_o*I/2πr (-k) + u_o*I/2πr (k)
B = 4π*10^-7/2π[ 50/0.28 -1 (-k) +30/1(-k) ]
= 1.16*10^-4 T(-k)
F = qv*B
F = (-2*10^-6)*(150*10^6(i) )(1.16*10^-4(-k))
F = 3.47*10^-2 N(-j)
c) F_e = qE
E = F_e/q
E = 3.47*10^-2/-2*10-6
= -1.73*10^4 N/C (j)
Answer:
Explanation:
25 mm diameter
r₁ = 12.5 x 10⁻³ m radius.
cross sectional area = a₁
Pressure P₁ = 100 x 10⁻³ x 13.6 x 9.8 Pa
a )
velocity of blood v₁ = .6 m /s
Cross sectional area at blockade = 3/4 a₁
Velocity at blockade area = v₂
As liquid is in-compressible
a₁v₁ = a₂v₂
a₁ x .6 m /s = 3/4 a₁ v₂
v₂ = .8m/s
b )
Applying Bernauli's theorem formula
P₁ + 1/2 ρv₁² = P₂ + 1/2 ρv₂²
100 x 10⁻³ x 13.6 x10³x 9.8 + 1/2 X 1060 x .6² = P₂ + 1/2x 1060 x .8²
13328 +190.8 = P₂ + 339.2
P₂ = 13179.6 Pa
= 13179 / 13.6 x 10³ x 9.8 m of Hg
P₂ = .09888 m of Hg
98.88 mm of Hg
A galaxy is a large system of stars, remnants of dead stars, dust,
interstellar gas, and dark matter, all related to each other by gravity.
Within the part of the universe that we can observe, it's estimated that
there may be as many as two trillion galaxies !
Galaxies come in all sizes. Tiny shrimp galaxies hold no more than
a few billion stars. Really big galaxies may hold 100 trillion stars. ( ! ! )
The galaxy we live in (the "Milky Way") is somewhere in the middle.
It's very hard to estimate the number of stars in it, because we can't
get outside of it and look it over. Estimates of the number of stars in
our galaxy range from 100 billion to 400 billion stars. ( ! ! ! )
Answer:
Explanation:
When the number of slits increases, the intensity of fringes increases.
So, the fringes appear to be more bright.
As we know that the fringe width is inversely proportional to the number of slits, so as the number of slits increases, the fringe width decreases, hence the fringes are narrower, bright and close together.