Voltage = (current) x (resistance) (Ohm's law)
Voltage = (15 A) x (0.10 ohm)
<em>Voltage = 1.5 volts </em><em> (B)</em>
Answer:
<h2><em><u>C. It must reflect red light wavel</u></em></h2>
Explanation:
<em>The color of the object is reflected by the object other colors are absorbed by the object.</em>
Here <em>object appears in red color so red color is reflected by the object and other colors are absorbed.</em>
5.47 m
The bullet undergoes a non-elastic collision with the block of wood and momentum is conserved. The initial momentum is 0.029 kg * 510 m/s = 14.79 kg*m/s. The combined mass of the block and bullet is 1.40 kg * 0.029 kg = 1.429 kg. Since momentum is conserved, the velocity of both combined will then be 14.79 kg*m/s / 1.429 kg = 10.34989503 m/s.
With a local gravitational acceleration of 9.8 m/s^2, it will take 10.34989503 m/s / 9.8 m/s^2 = 1.056111738 s for their upward velocity to drop to 0, just prior to descending.
The equation for distance under constant acceleration is
d = 0.5 A T^2
so
d = 0.5 * 9.8 m/s^2 * (1.056111738 s)^2
d = 4.9 m/s^2 * 1.115372003 s^2
d = 5.465322814 m
Rounding to 3 significant figures gives a height of 5.47 meters.
I was going to beg off until tomorrow, but this one is nothing like those others.
Why, at only 40km/hr, we can ignore any relativistic correction, and just go with Newton.
To put a finer point on it, let's give the car a direction. Say it's driving North.
a). From the point of view of the car, its driver, and passengers if any,
the pole moves past them, heading south, at 40 km/hour .
b). From the point of view of the pole, and any bugs or birds that may be
sitting on it at the moment, the car and its contents whiz past them, heading
north, at 40 km/hour.
c). A train, steaming North at 80 km/hour on a track that exactly parallels
the road, overtakes and passes the car at just about the same time as
the drama in (a) and (b) above is unfolding.
The rail motorman, fireman, and conductor all agree on what they have
seen. From their point of view, they see the car moving south at 40 km/hr,
and the pole moving south at 80 km/hr.
Now follow me here . . .
The car and the pole are both seen to be moving south. BUT ... Since the
pole is moving south faster than the car is, it easily overtakes the car, and
passes it . . . going south.
That's what everybody on the train sees.
==============================================
Finally ... since you posed this question as having something to do with your
fixation on Relativity, there's one more question that needs to be considered
before we can put this whole thing away:
You glibly stated in the question that the car is driving along at 40 km/hour ...
AS IF we didn't need to know with respect to what, or in whose reference frame.
Now I ask you ... was that sloppy or what ? ! ?
Of course, I came along later and did the same thing with the train, but I am
not here to make fun of myself ! Only of others.
The point is . . . the whole purpose of this question, obviously, is to get the student accustomed to the concept that speed has no meaning in and of itself, only relative to something else. And if the given speed of the car ...40 km/hour ... was measured relative to anything else but the ground on which it drove, as we assumed it was, then all of the answers in (a) and (b) could have been different.
And now I believe that I have adequately milked this one for 50 points worth.
The diameter of the circle is 18 m. Eugene incorrectly says that the circumference of the circle is about 113.04 m. What mistake did Eugene make? Use 3.14 for pi.