Answer:
20 [N], in the opposite direction of the first force.
Explanation:
We know that newton's second law stipulates that the sum of forces on a body must be equal to the product of mass by acceleration.
![SumF = m*a\\30 + F = 2*5\\F = 30 - (2*5)\\F = - 20 [N]](https://tex.z-dn.net/?f=SumF%20%3D%20m%2Aa%5C%5C30%20%2B%20F%20%3D%202%2A5%5C%5CF%20%3D%2030%20-%20%282%2A5%29%5C%5CF%20%3D%20-%2020%20%5BN%5D)
The negative sign means that the other force acting on the body must be in the opposite direction to the force of 30 [N]
Complete Question
A proton is located at <3 x 10^{-10}, -5*10^{-10} , -5*10^{-10}> m. What is r, the vector from the origin to the location of the proton
Answer:
The vector position is 
Explanation:
From the question we are told that
The position of the proton is
Generally the vector location of the proton is mathematically represented as

So substituting values

Answer:
x = 0.396 m
Explanation:
The best way to solve this problem is to divide it into two parts: one for the clash of the putty with the block and another when the system (putty + block) compresses it is spring
Data the putty has a mass m1 and velocity vo1, the block has a mass m2
. t's start using the moment to find the system speed.
Let's form a system consisting of putty and block; For this system the forces during the crash are internal and the moment is preserved. Let's write the moment before the crash
p₀ = m1 v₀₁
Moment after shock
= (m1 + m2) 
p₀ =
m1 v₀₁ = (m1 + m2) 
= v₀₁ m1 / (m1 + m2)
= 4.4 600 / (600 + 500)
= 2.4 m / s
With this speed the putty + block system compresses the spring, let's use energy conservation for this second part, write the mechanical energy before and after compressing the spring
Before compressing the spring
Em₀ = K = ½ (m1 + m2)
²
After compressing the spring
= Ke = ½ k x²
As there is no rubbing the energy is conserved
Em₀ = 
½ (m1 + m2)
² = = ½ k x²
x =
√ (k / (m1 + m2))
x = 2.4 √ (11/3000)
x = 0.396 m
To find the scientific notation, you need to divide at the decimal by the power of 10. So since there are 2 powers of 10, what you want to do is move the decimal 2 places to the left which will give you: .054