Answer:
Thus the time taken is calculated as 387.69 years
Solution:
As per the question:
Half life of
= 28.5 yrs
Now,
To calculate the time, t in which the 99.99% of the release in the reactor:
By using the formula:

where
N = No. of nuclei left after time t
= No. of nuclei initially started with

(Since, 100% - 99.99% = 0.01%)
Thus

Taking log on both the sides:


t = 387.69 yrs
Answer:
the velocity of the boats after the collision is 4.36 m/s.
Explanation:
Given;
mass of fish, m₁ = 800 kg
mass of boat, m₂ = 1400 kg
initial velocity of the fish, u₁ = 12 m/s
initial velocity of the boat, u₂ = 0
let the final velocity of the fish-boat after collision = v
Apply the principle of conservation of linear momentum for inelastic collision;
m₁u₁ + m₂u₂ = v(m₁ + m₂)
800 x 12 + 1400 x 0 = v(800 + 1400)
9600 = 2200v
v = 9600/2200
v = 4.36 m/s
Therefore, the velocity of the boats after the collision is 4.36 m/s.
Answer:
PE is related to the ability to do work, If an item is sitting on a shelf
it has potential energy relative to its position on the floor, However, if the object were to fall it would hit the floor with a KE equal to the PE that it had sitting on the shelf.
Sounds are caused by compressional waves in the air - when a piano key is struck or a TV is turned on, then compressional waves are produced in the surrounding air due to a disturbance. The human ear recognizes the disturbed air as due to the object that created the disturbance.
The common method would be to use Balance, If you think about it, on other planets, the balance weights change by the same factor as the object you are measuring. Your mass measured with a balance would be the same on the moon as it is on Earth. Weight is a measuring of gravity's effect on something. Mass is another story, it's the amount of matter in an object. Move to another planet and its object's weight will change, however, its mass will remain the same.