Answer:
Explanation:
None of the statement is true for both chemical and nuclear reactions. In chemical reactions, mass is always conserved and the type of atoms are also conserved.
Combustion reaction occurs when organic compound reacts with oxygen to form CO₂, H₂O and energy
C(s) + O₂(g) → CO₂(g) is Synthesis reaction not combustion
2 H₂(g) + O₂(g) → 2 H₂O(g) also Synthesis reaction and not combustion
C₃H₈(g) + 5 O₂ → 3 CO₂(g) + 4 H₂O(g) is considered as Combustion reaction
2 C₃H₇OH(l) + 9 O₂(g) → 6 CO₂(g) + 8 H₂O(g) Combustion reaction
Answer:
A) 2.69 M
B) 0.059
Explanation:
A) We have:
33.8% solute by mass= 33.8 g solute/100 g solution
molarity = mol solute/ 1 L solution
molarity=
x
x
x 
molarity= 2.69 mol solute/L solution = 2.69 M
B) We know that there are 33.8 g of solute in 100 g of solution.
As the total solution is compounded by solute+solvent (in this case, solvent is water), the mass of water is the difference between the mass of the total solution and the mass of solute:
mass of water= 100 g - 33.8 g = 66.2 g
Now, we calculate the number of mol of both solute and water:
mol solute= 33.8 g solute x
= 0.232 mol
mol H20= 66.2 g H₂O x 
Finally, the mol fraction of solute (Xsolute) is calculated as follows:
Xsolute=
Xsolute= 0.059
<u>Answer:</u> The net ionic equation is written below.
<u>Explanation:</u>
Net ionic equation of any reaction does not include any spectator ions.
Spectator ions are defined as the ions which does not get involved in a chemical equation. They are found on both the sides of the chemical reaction when it is present in ionic form.
The chemical equation for the reaction of ammonium carbonate and lead (II) nitrate is given as:

Ionic form of the above equation follows:

As, ammonium and nitrate ions are present on both the sides of the reaction. Thus, it will not be present in the net ionic equation and are spectator ions.
The net ionic equation for the above reaction follows:

Hence, the net ionic equation is written above.