If you look it up it will give you plenty of information. This is what I found:
The valence electrons of metals move freely in this way because metals have relatively low electronegativity, or attraction to electrons. The positive metal ions form a lattice-like structure held together by all the metallic bonds. ... When nonmetals bond together, the atoms share valence electrons and do not become ions
https://www.ck12.org/c/physical-science/metallic-bond/lesson/Metallic-Bonding-MS-PS/
Answer:
6. 7870 kg/m³ (3 s.f.)
7. 33.4 g (3 s.f.)
8. 12600 kg/m³ (3 s.f.)
Explanation:
6. The SI unit for density is kg/m³. Thus convert the mass to Kg and volume to m³ first.
1 kg= 1000g
1m³= 1 ×10⁶ cm³
Mass of iron bar
= 64.2g
= 64.2 ÷1000 kg
= 0.0642 kg
Volume of iron bar
= 8.16 cm³
= 8.16 ÷ 10⁶


Density of iron bar

= 7870 kg/m³ (3 s.f.)
7.

Mass
= 1.16 ×28.8
= 33.408 g
= 33.4 g (3 s.f.)
8. Volume of brick
= 12 cm³

Mass of brick
= 151 g
= 151 ÷ 1000 kg
= 0.151 kg
Density of brick
= mass ÷ volume

(3 s.f.)
Answer:
See explanation below
Explanation:
You forgot to put the picture to do so. In this case, I manage to find one, and I hope is the one you are looking for. If not, then post it again and I'll gladly help you out again.
According to the picture with the answer, we have a cyclohexane with 4 methyl groups there. Two of them are facing towards the molecule with a darker bond. This means that the alkyl bromide, should have a bromine in one of the bonds, and in order to produce an E2 reaction, this bromine should be facing in the opposite direction of the methyl groups which are facing towards. This is because an E2 reaction occurs with the less steric hindrance in the molecule. If the bromine is in the same direction as the methyl group, it will cause a lot more of work to do a reaction, and therefore, an E2 reaction. I will promote instead a E1 or a sustitution product.
Therefore the alkyl bromide should be like the one in the picture 2.
Answer:
0.595 M
Explanation:
The number of moles of water in 1L = 1000g/18g/mol = 55.6 moles of water.
Mole fraction = number of moles of KNO3/number of moles of KNO3 + number of moles of water
0.0194 = x/x + 55.6
0.0194(x + 55.6) = x
0.0194x + 1.08 = x
x - 0.0194x = 1.08
0.9806x= 1.08
x= 1.08/0.9806
x= 1.1 moles of KNO3
Mole fraction of water= 55.6/1.1 + 55.6 = 0.981
If
xA= mole fraction of solvent
xB= mole fraction of solute
nA= number of moles of solvent
nB = number of moles of solute
MA= molar mass of solvent
MB = molar mass of solute
d= density of solution
Molarity = xBd × 1000/xAMA ×xBMB
Molarity= 0.0194 × 1.0627 × 1000/0.981 × 18 × 0.0194×101
Molarity= 20.6/34.6
Molarity of KNO3= 0.595 M