The factors that can determine the outcome of a "neutralization reaction" include:
__________________________________________________________
1) temperature;
2) concentration (of the solution);
3) type of acid used;
4) type of alkali used;
5) type of reaction;
(e.g. whether the reaction is "endothermic" or "exothermic");
_____________________________________________________
Answer:
base
Explanation:
carbonic acid - H2CO3 - is a weak acid. Therefore, HCO3 itself is its conjugate base. The Na(sodium) ion is neutral.
This means that NaHCO3 is a base. (a weak one)
Answer:
7.5 gm left
Explanation:
Bismuth-210 has a half life of 5 days
15 days is 15/5 = 3 half lives
since half the amount is left in 5 days or 1 half life
(1/2) x (1/2) x (1/2) the staring amount would be left in
3 half lives. so 1/8 is left
(1/8) x 60.0 = 7.5 gm left
Answer:
both
Explanation:
A homolytic fission is said to have occurred when the breakage of a bond between two atoms leaves each of the bonding atoms with equal number of electrons. Homolytic fission often results in the creation of radicals.
Since homolytic fission yields two species with equal number of electrons(usually odd number of electrons), the products of such process can not be charged. They can not be nucleophiles because nucleophiles need to possess two electrons which can be shared with another chemical specie.
Answer:
NH3 is polar due to the bonds between nitrogen and hydrogen which have different electronegativity and due also to its asymmetrical shape.
Explanation:
NH3 is polar as there are 3 dipoles in the ammonia molecule that do not balance each other out.
Considering the N-H bond which is polar because N with an electronegativy of 3.0, is more electronegative than H, with an electronegativity of 2.1. The is overall asymmetrical shape of NH3
means that the dipoles remains unbalanced and do cancel out each other making the NH3 polar.