What you mean?? .!.!.!.!!.
Answer:
First you have to separate real and imaginary parts of Tan(x+iy)=Tan(z)=sin(z)/cos(z)
sinz=sin(x+iy)=sinxcos(iy)+cosxsin(iy)=sinxcoshy-icosx sinhy
cosz=cos(x+iy)=cosxcos(iy)-sinxsin(iy)=cosxcoshy−isinxsinhy
Now if you plug in Tan(z) and simplify (it is easy!) you get
Tan(z)=(sin(2x)+isinh(2y))/(cos(2x)+cosh(2y))= A+iB.
This means that
A=sin(2x)/(cos(2x)+cosh(2y)) and B= sinh(2y)/(cos(2x)+cosh(2y))
Now,
A/B=sin(2x)/sinh(2y)
If any questions, let me know.
Answer:
Explanation:
Obtain the following properties at 6MPa and 600°C from the table "Superheated water".

Obtain the following properties at 10kPa from the table "saturated water"

Calculate the enthalpy at exit of the turbine using the energy balance equation.

Since, the process is isentropic process 

Use the isentropic relations:

Calculate the enthalpy at isentropic state 2s.

a.)
Calculate the isentropic turbine efficiency.

b.)
Find the quality of the water at state 2
since
at 10KPa <
<
at 10KPa
Therefore, state 2 is in two-phase region.

Calculate the entropy at state 2.

Calculate the rate of entropy production.

since, Q = 0

The heat transferred to and the work produced by the steam during this process is 13781.618 kJ/kg
<h3>
How to calcultae the heat?</h3>
The Net Change in Enthalpy will be:
= m ( h2 - h1 ) = 11.216 ( 1755.405 - 566.78 ) = 13331.618 kJ/kg
Work Done (Area Under PV curve) = 1/2 x (P1 + P2) x ( V1 - V2)
= 1/2 x ( 75 + 225) x (5 - 2)
W = 450 KJ
From the First Law of Thermodynamics, Q = U + W
So, Heat Transfer = Change in Internal Energy + Work Done
= 13331.618 + 450
Q = 13781.618 kJ/kg
Learn more about heat on:
brainly.com/question/13439286
#SP1