Answer:
The molecular weight will be "28.12 g/mol".
Explanation:
The given values are:
Pressure,
P = 10 atm
= 
=
Temperature,
T = 298 K
Mass,
m = 11.5 Kg
Volume,
V = 1000 r
= 
R = 8.3145 J/mol K
Now,
By using the ideal gas law, we get
⇒ 
o,
⇒ 
By substituting the values, we get


As we know,
⇒ 
or,
⇒


Answer:
S = 0.5 km
velocity of motorist = 42.857 km/h
Explanation:
given data
speed = 70 km/h
accelerates uniformly = 90 km/h
time = 8 s
overtakes motorist = 42 s
solution
we know initial velocity u1 of police = 0
final velocity u2 = 90 km/h = 25 mps
we apply here equation of motion
u2 = u1 + at
so acceleration a will be
a =
a = 3.125 m/s²
so
distance will be
S1 = 0.5 × a × t²
S1 = 100 m = 0.1 km
and
S2 = u2 × t
S2 = 25 × 16
S2 = 400 m = 0.4 km
so total distance travel by police
S = S1 + S2
S = 0.1 + 0.4
S = 0.5 km
and
when motorist travel with uniform velocity
than total time = 42 s
so velocity of motorist will be
velocity of motorist = 
velocity of motorist =
velocity of motorist = 42.857 km/h
Answer:
no it is not 2D
Explanation:
it is 3D
ok so follow these steps
- make hole
-make square
-make triangle
ok now your figure is ready
Answer:
18 kJ
Explanation:
Given:
Initial volume of air = 0.05 m³
Initial pressure = 60 kPa
Final volume = 0.2 m³
Final pressure = 180 kPa
Now,
the Work done by air will be calculated as:
Work Done = Average pressure × Change in volume
thus,
Average pressure =
= 120 kPa
and,
Change in volume = Final volume - Initial Volume = 0.2 - 0.05 = 0.15 m³
Therefore,
the work done = 120 × 0.15 = 18 kJ