1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PolarNik [594]
2 years ago
10

on the same scale for stress, the tensile true stress-true strain curve is higher than the engineeringstress-engineering strain

curve. Explain whether this condition also holds for a compression test.
Engineering
1 answer:
Bess [88]2 years ago
5 0

Answer:

The condition does not hold for a compression test

Explanation:

For a compression test the engineering stress - strain curve is higher than the actual stress-strain curve and this is because the force needed in compression is higher than the force needed during Tension.  The higher the force in compression leads to increase in the area therefore for the same scale of stress the there is more stress on the Engineering curve making it higher than the actual curve.

<em>Hence the condition of : on the same scale for stress, the tensile true stress-true strain curve is higher than the engineering stress-engineering strain curve.</em><em> </em>does not hold for compression test

You might be interested in
A round bar of chromium steel, (ρ= 7833 kg/m, k =48.9 W/m-K, c =0.115 KJ/kg-K, α=3.91 ×10^-6 m^2/s) emerges from a heat treatmen
Lerok [7]

Answer:

Q = 424523.22 kw

Explanation:

\rho =7833 kg/m

k = 48.9 W/m - K

c = 0.115 KJ/kg- K

\alpha = 3.91*10^{-6} m^2/s

T_s = 285 degree celcius

T_∞ = 35 degree celcius

velocity of air stream = 15 m/s

D = 40 cm

L = 200 cm

mass flow rate\dot m = \rho AV = 7833 *\frac{\pi}{4} 0.4^2*15

\dot m = 14764.85 kg/s

A_s = \pi DL = \pi 0.4*2 = 2.513 m^2

Q = \dot m C \Delta T = h A_s \Delta T

\dot m C \Delta T = h A_s \Delta T

solving for h

h = \frac{14764.85*0.115*(285-35)}{2.513*(285-35)}

h = 675.6 kw/m^2K

Q = h A_s\Delta T

Q = 675.6*2.513*(285-35)

Q = 424523.22 kw

7 0
2 years ago
Two engineers are to solve an actual heat transfer problem in a manufacturing facility. Engineer A makes the necessary simplifyi
deff fn [24]

Answer:

Engineer A results will be more accurate

Explanation:

Analytical method is better than numerical method. Engineer A has used analytical method and therefore his results will be more accurate because he used simplified method. Engineer B has used software to solve the problem related to heat transfer his results will be approximate.

5 0
3 years ago
The hot and cold inlet temperatures to a concentric tube heat exchanger are Th,i = 200°C, Tc,i = 100°C, respectively. The outlet
alexgriva [62]

Answer:Counter,

0.799,

1.921

Explanation:

Given data

T_{h_i}=200^{\circ}C

T_{h_o}=120^{\circ}C

T_{c_i}=100^{\circ}C

T_{c_o}=125^{\circ}C

Since outlet temperature of cold liquid is greater than hot fluid outlet temperature therefore it is counter flow heat exchanger

Equating Heat exchange

m_hc_{ph}\left [ T_{h_i}-T_{h_o}\right ]=m_cc_{pc}\left [ T_{c_o}-T_{c_i}\right ]

\frac{m_hc_{ph}}{m_cc_{pc}}=\frac{125-100}{200-120}=\frac{25}{80}=C\left ( capacity rate ratio\right )

we can see that heat capacity of hot fluid is minimum

Also from energy balance

Q=UA\Delta T_m=\left ( mc_p\right )_{h}\left ( T_{h_i}-T_{h_o}\right )

NTU=\frac{UA}{\left ( mc_p\right )_{h}}=\frac{\left ( T_{h_i}-T_{h_o}\right )}{T_m}

T_m=\frac{\left ( 200-125\right )-\left ( 120-100\right )}{\ln \frac{75}{20}}

T_m=41.63^{\circ}C

NTU=1.921

And\ effectiveness \epsilon =\frac{1-exp\left ( -NTU\left ( 1-c\right )\right )}{1-c\left ( -NTU\left ( 1-c\right )\right )}

\epsilon =\frac{1-exp\left ( -1.921\left ( 1-0.3125\right )\right )}{1-0.3125exp\left ( -1.921\left ( 1-0.3125\right )\right )}

\epsilon =\frac{1-exp\left ( -1.32068\right )}{1-0.3125exp\left ( -1.32068\right )}

\epsilon =\frac{1-0.2669}{1-0.0834}

\epsilon =0.799

5 0
3 years ago
A thermocouple, with a spherical junction diameter of 0.5 mm, is used for measuring the temperature of hot airflow in a circular
german

Answer:

attached below

Explanation:

6 0
2 years ago
What is the need to achieve population inversion​
notka56 [123]

Explanation:

Population inversion is a process of achieving more electrons in the higher energy state than the lower energy state. In order to achieve population inversion, we need to supply energy to the laser medium. The process of supplying energy to the laser medium is called pumping.

3 0
3 years ago
Other questions:
  • Consider a Mach 4.5 airflow at a pressure of 1.25 atm. We want to slow this flow to a subsonic speed through a system of shock w
    15·1 answer
  • A large plate is fabricated from a steel alloy that has a plane strain fracture toughness of 78 MPa (70.98 ksi). If the plate is
    7·1 answer
  • Both carpenters and building inspectors have been associated with the personality characteristics identified as realistic, conve
    12·1 answer
  • Are you able to text without looking at your phone?
    10·1 answer
  • How many sets of equations (V and M equations) would you need to describe shear and moment as functions of x for this beam? In o
    12·1 answer
  • A subsurface exploration report shows that the average water content of a fine-grained soil in a proposed borrow area is 22% and
    9·1 answer
  • Which of the following elements found in fertilizer helps plants produce fruit?
    15·2 answers
  • Water flow enters a pipe at a velocity of 1m/s. The pipe inlet is 10cm. The pipe outlet is 6cm. 1. Determine the velocity of the
    9·1 answer
  • Are the communication skills required for a team leader in a manufacturing plant different from those of a customer service exec
    9·1 answer
  • In the case of a collision causing property damage, injury, or death, you are required to ____
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!