Answer:
option B is correct. Fracture will definitely not occur
Explanation:
The formula for fracture toughness is given by;
K_ic = σY√πa
Where,
σ is the applied stress
Y is the dimensionless parameter
a is the crack length.
Let's make σ the subject
So,
σ = [K_ic/Y√πa]
Plugging in the relevant values;
σ = [50/(1.1√π*(0.5 x 10^(-3))]
σ = 1147 MPa
Thus, the material can withstand a stress of 1147 MPa
So, if tensile stress of 1000 MPa is applied, fracture will not occur because the material can withstand a higher stress of 1147 MPa before it fractures. So option B is correct.
Answer:
450,000m = 450km = 4.5E5
32,600,000W = 32.6MW = 3.26E7
59,700,000,000cal = 59.7Gcal = 5.97E10
0.000000083s = 83ns = 8.3E-8
35,000Ω = 35kΩ = 3.5E4
Explanation:
Giga = 1,000,000,000
Mega = 1,000,000
kilo = 1,000
unit = 1
deci = .1
centi = .01
milli = .001
micro = .000001
nano = .0000000001
pico = .000000000001
You should be able to look at these and convert between them in seconds if you want to pursue anything in engineering.
Using an appropriate failure theory, find the factor of safety in each case. State the name of the theory that you are using the theory is max stress theory.
<h3>Wat is the max stress theory?</h3>
The most shear strain concept states that the failure or yielding of a ductile fabric will arise whilst the most shear strain of the fabric equals or exceeds the shear strain fee at yield factor withinside the uniaxial tensile test.”
Stress states at various critical locations are f= 2.662.
Read more about strain:
brainly.com/question/6390757
#SPJ1
Answer:
The Bailey family has flourished during its business’ 110-year history. But Bailey Nurseries’ leaders still operate with the belief that the family doesn’t always know best. The company has grown from a one-man operation selling fruit trees and ornamental shrubs to one of the largest wholesale nurseries in the United States, thanks to insights from those who are family and those who aren’t.
“For a business to thrive, you have to ask for outside help,” says Terri McEnaney, president of the Newport-based company and a fourth-generation family member. “We get an outside perspective through family business programs, advisors and our board, because you can get a bit ingrained in your own way of thinking.”
When Bailey Nurseries chose its current leader in 2000, it brought in a facilitator who gathered insights from key employees, board members and owners. Third-generation leaders (and brothers) Gordie and Rod Bailey picked Rod’s daughter McEnaney, who had experience both inside and outside the company.
Explanation:
Assumptions:
- Steady state.
- Air as working fluid.
- Ideal gas.
- Reversible process.
- Ideal Otto Cycle.
Explanation:
Otto cycle is a thermodynamic cycle widely used in automobile engines, in which an amount of gas (air) experiences changes of pressure, temperature, volume, addition of heat, and removal of heat. The cycle is composed by (following the P-V diagram):
- Intake <em>0-1</em>: the mass of working fluid is drawn into the piston at a constant pressure.
- Adiabatic compression <em>1-2</em>: the mass of working fluid is compressed isentropically from State 1 to State 2 through compression ratio (r).

- Ignition 2-3: the volume remains constant while heat is added to the mass of gas.
- Expansion 3-4: the working fluid does work on the piston due to the high pressure within it, thus the working fluid reaches the maximum volume through the compression ratio.

- Heat Rejection 4-1: heat is removed from the working fluid as the pressure drops instantaneously.
- Exhaust 1-0: the working fluid is vented to the atmosphere.
If the system produces enough work, the automobile and its occupants will propel. On the other hand, the efficiency of the Otto Cycle is defined as follows:

where:

Ideal air is the working fluid, as stated before, for which its specific heat ratio can be considered constant.

Answer:
See image attached.