Answer:
Knetic
Explanation:
When you jump on a trampoline, your body has kinetic energy that changes over time. As you jump up and down, your kinetic energy increases and decreases with your velocity. Your kinetic energy is greatest, just before you hit the trampoline on the way down and when you leave the trampoline surface on the way up.
Answer:
The answer that completes the question are in BOLD:
At chemical equilibrium, the amount of PRODUCT AND REACTANT REMAIN CONSTANT because the RATES OF THE FORWARD AND REVERSE REACTIONS ARE EQUAL.
Explanation:
In a reversible chemical reaction, an equilibrium is said to be achieved when the rates of the forward reaction is equal to that of the reverse reaction. A reversible reaction is one in which products are formed from reactants simultaneously with the formation of reactants from products.
The combination of two or more substances called REACTANTS gives rise to another substance called PRODUCT, which can in turn give rise to Reactants again. With time, the rate at which the reactants give rise the products, which is called the FORWARD REACTION will be equal to the rate at which the products give rise to the reactants, which is called REVERSE REACTION. At this point, the chemical reaction is said to be in a STATE OF EQUILIBRIUM.
When the rate at which both reaction occurs becomes equal i.e. at an equilibrium state, the concentration of both the reactants and the products becomes constant i.e. no longer changes. Hence, the amount of the reactants forming the products is the same as the amount of products forming the reactants.
N.B: At chemical equilibrium, the amount of the reactants and products does not necessarily equals zero (0). It simply means that there is no net change in the concentration/amount of both reactants and products.
I think the amount would be a 0.4998 mol
I did moles=mass(g)/A,r
=12.5/24.3 to get that
Answer:
The answer to your question is M = 36.49 g
Explanation:
Data
mass = 8.21 g
volume = 4.8064 L
Temperature = 200°C
Pressure = 1.816 atm
M = ?
Process
1.- Convert temperature to °K
°K = 273 + 200
°K = 473
2.- Calculate the number of moles
n = (PV)/RT
n = (1.816)(4.8064)/(0.082)(473)
n = 0.225
3.- Calculate the molar mass
M --------------- 1 mol
8.21 g ---------- 0.225 moles
M = (1 x 8.21)/0.225
M = 36.49 g
C. rusting is the correct answer