Answer:
12
Explanation:
alkyne formula is CnH2n-2
heptyne = 7
Answer: 53.25
Explanation: Please see attachment for explanation. Thanks.!
Answer:
Explanation:
At constant pressure and temperature, the mole ratio of the gases is equal to their volume ratio (a consequence of Avogadro's law).
Hence, the <em>complete combustion reaction</em> that has a ratio of 100 ml of gaseous hydrocarbon to 300 ml of oxygen, is that whose mole ratio is 1 mol hydrocarbon : 3 mol of oxygen.
Then, you must write the balanced chemical equations for the complete combustion of the four hydrocarbons in the list of choices, and conclude which has such mole ratio (1 mol hydrocarbon : 3 mol oxygen).
A complete combustion reaction of a hydrocarbon is the reaction with oxygen that produces CO₂ and H₂O, along with the release of heat and light.
<u>a. C₂H₄:</u>
- C₂H₄ (g) + 3O₂ (g) → 2CO₂(g) + 2H₂O (g)
Precisely, for this reaction the mole ratio is 1 mol C₂H₄: 2 mol O₂, hence, this is the right choice.
The following analysis just shows that the other options are not right.
<u>b. C₂H₂:</u>
- 2C₂H₂ (g) + 5O₂ (g) → 4CO₂(g) + 2H₂O (g)
The mole ratio for this reaction is 2 mol C₂H₂ :5 mol O₂.
<u>с. С₃Н₈</u>
- C₃H₈ (g) + 5O₂ (g) → 3CO₂(g) + 4H₂O (g)
The mole ratio is 1 mol C₃H₈ : 5 mol O₂
<u>d. C₂H₆</u>
- 2C₂H₆ (g) +7 O₂ (g) → 4CO₂(g) + 6H₂O (g)
The mole ratio is 2 mol C₂H₆ : 7 mol O₂
Answer:
Explanation:
13 ) symbol of enthalpy change = Δ H .
14 ) enthalpy change is nothing but heat absorbed or evolved .
During fusion enthalpy change
Δ H .= m Lf , m is mass and Ls is latent heat of fusion
During evaporation, enthalpy change
Δ H .= m Lv , m is mass and Lv is latent heat of evaporation
during temperature rise , enthalpy change
Δ H = m c Δ T
In case of gas , enthalpy change can be calculated by the following relation
Δ H = Δ E + W , Δ E is change in internal energy , W is work done by gas.
15 ) When enthalpy change is negative , that means heat is released to the environment .So reaction is called exothermic .
when heat is absorbed enthalpy change is positive . Reaction is endothermic.