Answer:
Option A
Explanation:
Silicon (Obtained from Sand (SiO2)) is the element that is primarily used in appliances to make electronic chips.
Answer:
Collisions between gas particles are elastic; there is no net gain or loss of kinetic energy.
Explanation:
When a gas is paced in a container, the molecules of the gas have little or no intermolecular interaction between them. There is a lot of space between the molecules of the gas.
The gas molecules move at very high speed and collide with each other and with the walls of container.
The collision of these particles with each other is perfectly elastic hence the kinetic energy of the colliding gas particles do not change.
Henderson–Hasselbalch equation is given as,
pH = pKa + log [A⁻] / [HA]
-------- (1)
Solution:
Convert Ka into pKa,
pKa = -log Ka
pKa = -log 1.37 × 10⁻⁴
pKa = 3.863
Putting value of pKa and pH in eq.1,
4.29 = 3.863 + log [lactate] / [lactic acid]
Or,
log [lactate] / [lactic acid] = 4.29 - 3.863
log [lactate] / [lactic acid] = 0.427
Taking Anti log,
[lactate] / [lactic acid]
= 2.673
Result:
2.673 M
lactate salt when mixed with 1 M Lactic acid produces a buffer of pH = 4.29.
Answer:
C.)One electron in each p orbital
Explanation:
In a P-sublevel with 3 electrons, they should be arranged with one electron going into each p-orbitals.
This is in accordance with the Hund's rule of maximum multiplicity.
The rule states that "electrons go into degenerate orbitals or sub-levels(p,d and f) singly before paring up".
Since the p-orbital is 3-fold degenerate with a capacity to accommodate a maximum number of 6 electrons, given 3 electrons, they will follow the Hund's rule in order to fill the orbitals.
So one electron will go in each p - orbitals easily.