Answer:
1. the voltage will be 2.35×12.5 = 29.4V
2. the resistance would be 9.0/6.2= 1.45ohms
3. in series they will add up thus 4+8+12= 24ohms
4. in parallel it will be 2.18ohms
Answer:
Distance = 150 meters
Explanation:
Given the following data;
Work done = 6,000 Joules
Force = 40 Newton
To find the total distance covered by the wheelbarrow;
Workdone = force * distance
Substituting into the formula, we have;
6000 = 40 * distance
Distance = 6000/40
Distance = 150 meters
Therefore, the total distance the wheelbarrow was pushed is 150 meters.
Technician A and B are correct . Because according to technician A, the cause written on the repair order is a diagnosis. Here, by diagnosis, he means that the problem is identified after examining the device and hence the judgement is made.
And according to B, you have to write the cause of the problems in the device that have been identified and the concern measures, which is also kind of diagnosis.
So, option D is correct.
We can solve the problem by applying Newton's second law, which states that the resultant of the forces acting on an object is equal to the product between its mass and its acceleration:

We should consider two different directions: the direction perpendicular to the inclined plane and the direction parallel to it. Let's write the equations of the forces along the two directions, decomposing the weight of the object (mg):

(parallel direction) (1)

(perpendicular direction) (2)
where

is the angle of the inclined plane, N is the normal reaction of the plane,

is the frictional force, with

being the coefficient of friction.
From eq.(2), we find

and if we substitute into eq.(1), we can find the acceleration of the block:

from which
The magnitude of your displacement is usually less than the distance you travel.
The magnitude of your displacement can be equal to the distance you travel, if you travel in a perfectly straight line.
The magnitude of your displacement can never be greater than the distance you travel.