Answer:
it's A
Explanation:
wen aligning the vectors the head and the tail should meet
Answer:
- on the moon, they will fall at the time
- on earth, the coin will fall faster to the ground
Explanation:
A coin and feather dropped in a moon experience the same acceleration due to gravity as small as 1.625 m/s², and because of the absence of air resistance both will fall at the same rate to the ground.
If the same coin and feather are dropped in the earth, they will experience the same acceleration due to gravity of 9.81 m/s² and because of the presence of air resistance, the heavier object (coin) will be pulled faster to the ground by gravity than the lighter object (feather).
Taking into account the rule of three for the change of units, the mass of the book is 45600 miligrams.
First of all, the rule of three is a mathematical tool that helps you quickly solve proportionality problems.
Having three known values and one unknown, a proportional relationship is established between all of them in order to find the fourth term of the proportion.
If the relationship between the magnitudes is direct (when one magnitude increases, so does the other; or when one magnitude decreases, so does the other), the rule of three is applied as follows, where a, b and c are known values and x is the unknown to calculate:
a → b
c → x
So: 
Being 1 kg equivalent to 1000000 milligrams, In this case the rule of three is applied as follows: if 1 kg equals 1000000 milligrams, 4.56×10⁻² kg equals how many milligrams?
1 kg → 1000000 milligrams
4.56×10⁻² kg → x
So:

<u><em>x=45600 miligrams</em></u>
In summary, the mass of the book is 45600 miligrams.
Learn more:
Kinetic energy lost in collision is 10 J.
<u>Explanation:</u>
Given,
Mass,
= 4 kg
Speed,
= 5 m/s
= 1 kg
= 0
Speed after collision = 4 m/s
Kinetic energy lost, K×E = ?
During collision, momentum is conserved.
Before collision, the kinetic energy is

By plugging in the values we get,

K×E = 50 J
Therefore, kinetic energy before collision is 50 J
Kinetic energy after collision:


Since,
Initial Kinetic energy = Final kinetic energy
50 J = 40 J + K×E(lost)
K×E(lost) = 50 J - 40 J
K×E(lost) = 10 J
Therefore, kinetic energy lost in collision is 10 J.
When the car speeds up, slows down, or goes around a curve,
passengers need a force applied to them to make them do the
same thing, otherwise they won't keep up with the car.
The force on the passenger is applied by means of friction between
the upholstery and the seat of his pants, and also by the seat-back
or his seat-belt.