Answer:
h = 3.5 m
Explanation:
First, we will calculate the final speed of the ball when it collides with a seesaw. Using the third equation of motion:

where,
g = acceleration due to gravity = 9.81 m/s²
h = height = 3.5 m
vf = final speed = ?
vi = initial speed = 0 m/s
Therefore,

Now, we will apply the law of conservation of momentum:

where,
m₁ = mass of colliding ball = 3.6 kg
m₂ = mass of ball on the other end = 3.6 kg
v₁ = vf = final velocity of ball while collision = 8.3 m/s
v₂ = vi = initial velocity of other end ball = ?
Therefore,

Now, we again use the third equation of motion for the upward motion of the ball:

where,
g = acceleration due to gravity = -9.81 m/s² (negative for upward motion)
h = height = ?
vf = final speed = 0 m/s
vi = initial speed = 8.3 m/s
Therefore,

<u>h = 3.5 m</u>
It'll last 20 hours. If it travels 110 miles in one hours, 110 times 20 equals 2,200.
Answer:
True
Explanation:
A crowbar makes our work easier by multiply effort because it belongs to first class lever.
And first class lever makes work easier by multiplying the effort
Answer:
Explanation:
To find the direction of this vector we need o find the angle that has a tangent of the y-component over the x-component:
but since we are in Q2 we have to add 180 degrees to that angle giving us 165.5 degrees
<em>number of waves that pass a given point in one second is called <u>frequency..</u></em>