Answer:
It's really important waves type for fulfill human's needs
Explanation:
Electromagnetic waves are transverse waves composed by the perpendicular oscillating electric and magnetic fields.
EM waves have both Electrical and magnetic features.
they travel in the velocity of light (3*10⁸ ms⁻¹)
they does not require any media to travel. It has two perpendicular electric field and the magnetic field which are perpendicular to each other
They travel perpendicular to each of those electric and magnetic fields.
Example :
- Radio Wave
- Micro Wave
- IR wave
- Light Wave
- UV rays
- X rays
- Gamma rays
- Cosmic rays
The main importance of em waves is they allow energy to be stored within them and then can be propagated over a large distance using the dielectric and magnetic properties of materials .
This performance has been used in many fields wisely and effectively to make the things easy.
Ex : medicine , Telecommunication , energy , Engineering etc
Answer:
It's used to indicate pressure
Answer:
Not possible
Explanation:
= longitudinal modulus of elasticity = 35 Gpa
= transverse modulus of elasticity = 5.17 Gpa
= Epoxy modulus of elasticity = 3.4 Gpa
= Volume fraction of fibre (longitudinal)
= Volume fraction of fibre (transvers)
= Modulus of elasticity of aramid fibers = 131 Gpa
Longitudinal modulus of elasticity is given by

Transverse modulus of elasticity is given by


Hence, it is not possible to produce a continuous and oriented aramid fiber.
Explanation:
The reading on the scale is
W = m(g + a)
= (77 kg)(9.8 m/s^2 + 2 m/s^2)
= 908.6 N
Highest to lowest number:
-less than 1 solar mass
-between 1 and 10 solar masses
-between 10 and 30 solar masses
-between 30 and 60 solar masses
<h3>What is Stellar masses ?</h3>
Stellar mass is a phrase that is used by astronomers to describe the mass of a star.
- It is usually enumerated in terms of the Sun's mass as a proportion of a solar mass ( M ☉). Hence, the bright star Sirius has around 2.02 M ☉.
- Stellar masses are not fixed, although they change for single stars only on long periods.
Learn more about Stellar masses here:
brainly.com/question/1128503
#SPJ4