<span>Your
mother is sure that you were driving too fast because
she knows how long it took you to get
home and how far
you traveled. </span>
If she gets her calculator out of her sewing box and divides
the distance you covered by the time it took you to cover the
distance, the answer she gets will be your average speed.
Answer:
a) k= 3232.30 N / m, b) f = 4,410 Hz
Explanation:
In this exercise, the car + spring system is oscillating in the form of a simple harmonic motion, as the four springs are in parallel, the force is the sum of the 4 Hocke forces.
The expression for the angular velocity is
w = √k/m
the angular velocity is related to the period
w = 2π / T
we substitute
T = 2
√m/ k
a) empty car
k = 4π² m / T²
k = 4 π² 1310/2 2
k = 12929.18 N / m
This is the equivalent constant of the short springs
F1 + F2 + F3 + F4 = k_eq x
k x + kx + kx + kx = k_eq x
k_eq = 4 k
k = k_eq / 4
k = 12 929.18 / 4
k= 3232.30 N / m
b) the frequency of oscillation when carrying four passengers.
In this case the plus is the mass of the vehicle plus the masses of the passengers
m_total = 1360 + 4 70
m_total = 1640 kg
angular velocity and frequency are related
w = 2pi f
we substitute
2 pi f = Ra K / m
in this case the spring constant changes us
k_eq = 12929.18 N / m
f = 1 / 2π √ 12929.18 / 1640
f = π / 2 2.80778
f = 4,410 Hz
The product of (frequency) times (wavelength) is always
the same number (the speed of the wave).
So if the frequency is doubled, the wavelength has to drop to
half of what it was, in order to keep their product constant.
The frequency of the wheel is given by:

where N is the number of revolutions and t is the time taken. By using N=100 and t=10 s, we find the frequency of the wheel:

And now we can find the angular speed of the wheel, which is related to the frequency by: