1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maru [420]
3 years ago
11

Speedy Sue, que conduce a 30.0 m/s, entra a un túnel de un carril. En seguida observa una camioneta lenta 155 m adelante que se

mueve a 5.00 m/s. Sue aplica los frenos, pero solo puede acelerar a -2.00 m/s2 porque el camino esta húmedo. ¿Habrá una colisión? Establezca como llega a su respuesta. Si es si, determine cuán lejos en el túnel y en qué tiempo ocurre la colisión. Si es no, determine la distancia de acercamiento mas próxima entre el automóvil de Sue y la camioneta.
Physics
1 answer:
Romashka [77]3 years ago
0 0

Answer:

Si ocurre una colisión. 5.201 segundos después de que Speedy Sue ingrese al túnel y a una distancia de 128.995 metros.

Explanation:

Supongamos que el vehículo de Speedy Sue decelera a razón constante, mientras que la camioneta se desplaza a velocidad constante. Se requiere conocer si ambos vehículos colisionarán, lo cual implica conocer si existe algún instante tal que ambos tengan la misma posición. Consideremos además que la posición de referencia se encuentra en la posición inicial de Sppedy Sue. Entonces, las ecuaciones cinemáticas son:

Speedy Sue

x_{S} = x_{S,o}+v_{S,o}\cdot t+\frac{1}{2}\cdot a_{S}\cdot t^{2}

Camioneta lenta

x_{C} = x_{C,o} +v_{C}\cdot t

Donde:

x_{S,o}, x_{C,o} - Posiciones iniciales de Speedy Sue y la camioneta lenta, medidas en metros.

v_{S,o} - Velocidad inicial de Speedy Sue, medida en metros por segundo.

v_{S}, v_{C} - Velocidades actuales de Speedy Sue y la camioneta lenta, medidas en metros por segundo.

a_{S} - Deceleración de Speedy Sue, medida en metros por segundo cuadrado.

t - Tiempo, medido en segundos.

Si conocemos que x_{S} = x_{C}, x_{S,o} = 0\,m, x_{C,o} = 155\,m, v_{S,o} = 30\,\frac{m}{s}, v_{C} =-5\,\frac{m}{s} y a_{S} = -2\,\frac{m}{s^{2}}, encontramos la siguiente función cuadrática:

155\,m + \left(-5\,\frac{m}{s} \right)\cdot t = 0\,m+\left(30\,\frac{m}{s} \right)\cdot t +\frac{1}{2}\cdot (-2\,\frac{m}{s^{2}} )\cdot t^{2}

-t^{2}+35\cdot t-155 = 0 (Ec. 1)

Las raíces de esta función son:

t_{1}\approx 29.798\,s, t_{2} \approx 5.201\,s

La colisión ocurriría en la raíz positiva más pequeña, es decir:

t \approx 5.201\,s

Ahora, la posición en que ocurriría la colisión se determina a partir de la ecuación de desplazamiento de la camioneta lenta, es decir: (v_{C,o} = -5\,\frac{m}{s},  x_{C,o} = 155\,m, t \approx 5.201\,s)

x_{C} = 155\,m +\left(-5\,\frac{m}{s}\right)\cdot (5.201\,s)

x_{C} = 128.995\,m

En síntesis, si ocurre una colisión. 5.201 segundos después de que Speedy Sue ingrese al túnel y a una distancia de 128.995 metros.

You might be interested in
Consider a system consisting of an ideal gas confined within a container, one wall of which is a movable piston. Energy can be a
Helen [10]

Complete Question

Consider a system consisting of an ideal gas confined within a container, one wall of which is a movable piston. Energy can be added to the gas in the form of heat by applying a flame to the outside of the container. Conversely, energy can also be removed from the gas in the form of heat by immersing the container in ice water. Energy can be added to the system in the form of work by pushing the piston in, thereby compressing the gas. Conversely, if the gas pushes the piston out, thereby pushing some atmosphere aside, the internal energy of the gas is reduced by the amount of work done.

          pV=nRT

so the absolute temperature T is directly proportional to the product of the absolute pressure p and the volume V,Here n denotes the amount of gas moles,which is a constant because the gas is confined and R is the universal constant

What is the \triangle U as the system of ideal gas goes from point A to point B on the graph recall u is proportional to T

Answer:

\triangle T=0

\triangle V=0

The gas A and B have same internal energy

Explanation:

From the question we are told that

Pa=u atm\\Va=1m^3\\Pb=1 atm\\Vb=4m^3

Generally the equation of temperature is mathematically given as

Ta=\frac{Pv}{nR}

Ta=\frac{u*1}{nR}

And

Tb=\frac{PbVb}{nR}

Tb=\frac{u*1}{nR}

Generally the change in temperature \triangle T is mathematically given as

\triangle T=Tb-Ta=Tb=\frac{u*1}{nR}-\frac{u*1}{nR}

\triangle T=0

Generally the change in internal energy \triangle V

\triangle V=nC_v \triangle T\\

\triangle V=0

Therefore with

\triangle T=0

\triangle v=0

The gas A and B have same internal energy

6 0
3 years ago
Salmon often jump waterfalls to reach their breeding grounds. Starting downstream, 2.33 m away from a waterfall 0.488 m in heigh
Ulleksa [173]

Answer:

5.68 m/s

Explanation:

The motion of the salmon is the same as a projectile: it is launched with an initial speed u at an angle of \theta=38^{\circ} above the horizontal.

The motion of the salmon consists of two indipendent motion:

- Along the horizontal direction, it is a uniform motion with constant velocity

v_x = u cos \theta

So that the distance travelled is

d=v_x t = u cos \theta t (1)

- Along the vertical direction, it is a uniformly accelerated motion with constant acceleration downward, so the vertical displacement is

y = u sin \theta t - \frac{1}{2}gt^2 (2)

where g is the acceleration of gravity.

We know the following:

- The horizontal distance travelled by the salmon to reach the waterfall is

d = 2.33 m

- The vertical distance travelled is the height of the waterfall,

y = 0.488 m

From (1) we get:

t=\frac{d}{u cos \theta}

And substituting into (2), we can solve the equation to find t, the time at which the salmon reaches the waterfall:

y = u sin \theta \frac{d}{u cos \theta} - \frac{1}{2}gt^2 = d tan \theta - \frac{1}{2}gt^2\\t = \sqrt{\frac{2(d tan \theta - y)}{g}}=\sqrt{\frac{2(2.33 tan 38^{\circ}-0.488)}{9.81}}=0.521 s

And then, we can use eq.(1) again to find the initial speed, u:

u=\frac{d}{cos \theta t}=\frac{2.33}{cos(38^{\circ})(0.521)}=5.68 m/s

5 0
3 years ago
Prisms separate (blank) light, such as that from the sun, by wavelength
Natali5045456 [20]
The correct answer that would best complete the given statement above would be the term WHITE. Prisms separate WHITE light, such as that from the Sun, ...
4 0
3 years ago
Read 2 more answers
A delusion is best characterized as
balu736 [363]

Answer:

This is the most common form of delusional disorder. In this form, the affected person fears they are being stalked, spied upon, obstructed, poisoned, conspired against or harassed by other individuals or an organization.

Explanation:

hope this help

pick me as the brainliest

5 0
3 years ago
Read 2 more answers
A dog is 10 m from a cat, whose speeds are 6 and 5 m / s, respectively. What time does the dog require to catch the cat?
scoray [572]

Answer:

10 seconds

Explanation:

because the cat is moving one m/s slower than the dog, the dog has a relative speed of 1 m/s. 10 meters would take 10 seconds for the dog to cover

4 0
4 years ago
Other questions:
  • David is driving a steady 30 m/s when he passes Tina, who is sitting in her car at rest. Tina begins to accelerate at a steady 2
    15·1 answer
  • A tire company has developed a new type of steel-belted radial tire. Extensive testing indicates the population of mileages obta
    9·1 answer
  • A weightlifter raises a 200-kg barbell through a height of 2 m in 2.2 s. the average power he develops during the lift is
    5·2 answers
  • Stopping on snow and ice may require up to _____ the distance than normal conditions.
    14·1 answer
  • You drop a pencil from your desk, which is 1 meter above the floor. How long does it take for the pencil to hit the floor? How f
    10·1 answer
  • A _______ is a very massive object in space that does not allow any object or radiation to escape its gravitational hold.
    8·2 answers
  • A shunt resistance of 8 Ω is connected to a galvanometer of resistance of 100 Ω. The current in the galvanometer is 0.42 A. What
    15·1 answer
  • The scientist who found a way to measure the distance between the sun and Venus which
    7·1 answer
  • The movement of an object or a point mass at a constant speed around a circle that has a fixed radius is called uniform ________
    14·1 answer
  • 8. A monorail train traveling at 80 km/h must be stopped at 40 m. a) What average acceleration
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!