Because the temperature of the place its contained in is constantly changing, for example, if you put a room temperature item in the fridge it will become cold, or whatever the temperature you set your fridge to.
Answer:
Día Internacional del Deporte para el Desarrollo y la Paz, 6 de abril. El deporte ha desempeñado históricamente un papel importante en todas las sociedades, ya sea en forma de competiciones deportivas, de actividades físicas o de juegos. ... De hecho, el deporte es un socio natural para el sistema de la ONU.
Explanation:
Answer:
-22/15
Explanation:
the least common denominator is 15 so first you multiply -2/3 by 5 in both the numerator and denominator making it -10/15
Then you do the same to -4/5 except you multiply the numerator and denominator by 3 giving you -12/15
If you add -10/15+ -12/15 you get -22/15
Answer:
the maximum theoretical work that could be developed by the turbine is 775.140kJ/kg
Explanation:
To solve this problem it is necessary to apply the concepts related to the adiabatic process that relate the temperature and pressure variables
Mathematically this can be determined as
Where
Temperature at inlet of turbine
Temperature at exit of turbine
Pressure at exit of turbine
Pressure at exit of turbine
The steady flow Energy equation for an open system is given as follows:
Where,
m = mass
m(i) = mass at inlet
m(o)= Mass at outlet
h(i)= Enthalpy at inlet
h(o)= Enthalpy at outlet
W = Work done
Q = Heat transferred
v(i) = Velocity at inlet
v(o)= Velocity at outlet
Z(i)= Height at inlet
Z(o)= Height at outlet
For the insulated system with neglecting kinetic and potential energy effects
Using the relation T-P we can find the final temperature:
From this point we can find the work done using the value of the specific heat of the air that is 1,005kJ / kgK
the maximum theoretical work that could be developed by the turbine is 775.140kJ/kg
The magnitude of the current in wire 3 is (I₃)= 0.33A
<h3>How to calculate the value of the magnitude of the current in wire 3 ?</h3>
To calculate the magnitude of the current in wire 3 we are using the Kirchhoff’s current law,
I₁ + I₂ + I₃ = 0
Where we are given,
I₁ = current in wire 1
=0.40 A.
I₂ = current in wire 2
= -0.73 A.
We have to calculate the magnitude of the current in wire 3, I₃
Now we put the known values in above equation, we get,
I₁ + I₂ + I₃ = 0
Or, I₃ = -.(I₁ + I₂)
Or, I₃ = -.(0.40 - 0.73)
Or, I₃ = 0.33 A
From the above calculation, we can conclude that the current in wire 3 is I₃ = 0.33 A
Learn more about current:
brainly.com/question/25537936
#SPJ4