- Initial velocity (u) = 10 m/s
- Final velocity (v) = 22 m/s
- Time (t) = 12 s
- Mass (m) = 200 Kg
- Let the acceleration be a.
- By using the equation of motion,
v = u + at, we have
- 22 m/s = 10 m/s + 12 s × a
- or, 22m/s - 10 m/s = 12 s × a
- or, 12 m/s = 12 s × a
- or, a = 1 m/s^2
- Let the force be F.
- We know, F = ma
- Therefore, the force on the accelerated object (F)
- = ma
- = (200 × 1) N
- = 200 N
<u>Answer</u><u>:</u>
<u>b)</u><u> </u><u>2</u><u>0</u><u>0</u><u> </u><u>N</u>
Hope you could understand.
If you have any query, feel free to ask.
Answer:1/4 the brightness of star b
Explanation:
thank you so much for the schlatt
Answer:
v = 1.30 m/s
Explanation:
given,
mass hung = 0.35 Kg
spring stretched when load is hanged (x)= 0.13 m
now,
weight of the mass attached = Kx
m g = k x
0.35 x 9.8 = k x 0.13
k = 26.38 N/m
now, using conservation of energy




v = 1.30 m/s
Answer:
I think it's TRUE because forces change an object's motion but dont quote me on it ok? Cause I'm not a 100 percent sure