From the calculation, the standard free energy of the system is -359kJ.
<h3>What is the standard free-energy?</h3>
The standard free-energy is the energy present in the system. We have to first obtain the cell potential using the formula;
Ereduction - E oxidation = 0.96 V - 0.34 V = 0.62 V
Using the formula;
ΔG = -nFEcell
ΔG =-(6 * 96500 * 0.62)
ΔG =-359kJ
Learn more about free energy:brainly.com/question/15319033
#SPJ1
The new pressure inside the syringe will be 1.25 atm
<h3>Gas law</h3>
At constant temperatures, the volume of a gas is inversely proportional to its pressure.
Thus: P1V1 = P2V2
In this case, P1 = 3.0 atm, V1 = 89.6 mL, V2 = 215 mL
P2 = P1V1/V2
= 3 x 89.6/215
= 1.25 atm
More on gas laws can be found here: brainly.com/question/1190311
Answer:
Explanation: Q1 = mc(ice) ΔT (ice warms)
Q2 = ms (ice melts)
Q3 = mc((water) ΔT (water warms)
Q4 = mr (water boils)
Q5 = mc(vapour)ΔT
Answer:
2.1056L or 2105.6mL
Explanation:
We'll begin by calculating the number of mole in 10g of Na2CO3. This can be obtained as follow:
Molar mass of Na2CO3 = (23x2) + 12 + (16x3) = 106g/mol
Mass of Na2CO3 = 10g
Mole of Na2CO3 =.?
Mole = mass /molar mass
Mole of Na2CO3 = 10/106
Mole of Na2CO3 = 0.094 mole
Next, we shall determine the number of mole CO2 produced by the reaction of 0.094 mole of Na2CO3. This is illustrated below:
Na2CO3 + 2HCl —> 2NaCl + H2O + CO2
From the balanced equation above,
1 mole of Na2CO3 reacted to produce 1 mole of CO2.
Therefore, 0.094 mole of Na2CO3 will also react to 0.094 mole of CO2.
Next, we shall determine the volume occupied by 0.094 mole of CO2 at STP. This is illustrated below:
1 mole of a gas occupy 22.4L at STP. This implies that 1 mole CO2 occupies 22.4L at STP.
Now, if 1 mole of CO2 occupy 22.4L at STP, then, 0.094 mole of CO2 will occupy = 0.094 x 22.4 = 2.1056L
Therefore, the volume of CO2 produced is 2.1056L or 2105.6mL
Answer:
An electron is a negatively charged component of an atom
the proton is a positively charged body.
Explanation: