Answer:
3s orbital
Explanation:
3s is the outermost orbital of magnesium and it loses electron from it, it doesnt even have 4f, 5p or 3d orbitals.
We can use the ideal gas law equation to find the volume occupied by oxygen gas
PV = nRT
where ;
P - pressure - 52.7 kPa
V - volume
n - number of oxygen moles - 12.0 g / 32 g/mol = 0.375 mol
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature - 25 °C + 273 = 298 K
substituting the values in the equation
52 700 Pa x V = 0.375 mol x 8.314 Jmol⁻¹K⁻¹ x 298 K
V = 17.6 L
volume of the gas is 17.6 L
<span>8.278 g/mL
The definition of density is mass per volume. So what you need to do is divide the known mass by the known volume. So
1.663 g / 0.2009 mL = 8.27775 g/mL
But you also have to keep track of significant figures. Since both 1.663 and 0.2009 have 4 significant figures each, you need to round the result to 4 significant figures. So
8.27775 g/mL = 8.278 g/mL</span>
I think the correct answer from the choices listed above is option D. The net ionic equation that will describe the reaction of the reactants when mixed is expressed as:
<span>2PO43–(aq) + 3Ca2+(aq) → Ca3(PO4)2(s)
</span>
Hope this answers the question. Have a nice day.