Ok first, we have to create a balanced equation for the dissolution of nitrous acid.
HNO2 <-> H(+) + NO2(-)
Next, create an ICE table
HNO2 <--> H+ NO2-
[]i 0.230M 0M 0M
Δ[] -x +x +x
[]f 0.230-x x x
Then, using the concentration equation, you get
4.5x10^-4 = [H+][NO2-]/[HNO2]
4.5x10^-4 = x*x / .230 - x
However, because the Ka value for nitrous acid is lower than 10^-3, we can assume the amount it dissociates is negligable,
assume 0.230-x ≈ 0.230
4.5x10^-4 = x^2/0.230
Then, we solve for x by first multiplying both sides by 0.230 and then taking the square root of both sides.
We get the final concentrations of [H+] and [NO2-] to be x, which equals 0.01M.
Then to find percent dissociation, you do final concentration/initial concentration.
0.01M/0.230M = .0434 or
≈4.34% dissociation.
Conc = moles / Vol you have C but need to find moles
moles KCl = mass / molar mass
25 g / 74.55 g,p;
0.335 moles
So rearrange the formula to find volume. Vol = moles / Conc
0.335 moles / 0.750 mol / L = 0.447 L or 447 mL
The answer in this question is 447 mL.
Answer:
Protonation occurs at the carbonyl oxygen because the resulting conjugate acid is stabilized by resonance.
Explanation:
The carboxyl group is an organic and a functional group that consists of a carbon atom that's singly bonded to a hydroxyl group and double-bonded to an oxygen atom.
In the presence of strong acids, protonation occurs at the carbonyl oxygen because the resulting conjugate acid is stabilized by resonance.