Answer:
[H⁺] = 0.000048936M
pH = 4.31
Explanation:
Acetic acid, CH₃COOH, dissociates in water as follows:
CH₃COOH(aq) ⇄ H⁺(aq) + CH₃COO⁻(aq)
And Ka is defined as:
Ka = 1.76x10⁻⁵ = [H⁺] [CH₃COO⁻] / [CH₃COOH]
<em>Where [] are equilibrium concentrations of the species.</em>
<em />
The 0.000185M of acetic acid will decreases X, and X of [H⁺] and [CH₃COO⁻] will be produced. That means Ka is:
1.76x10⁻⁵ = [X] [X] / [0.000185 - X]
3.256x10⁻⁹ - 1.76x10⁻⁵X = X²
3.256x10⁻⁹ - 1.76x10⁻⁵X - X² = 0
Solving for X:
X = -0.000066M → False solution. There is no negative concentrations.
X = 0.000048936
As [H⁺] = X,
[H⁺] = 0.000048936M
And pH = -log [H⁺]
<h3>pH = 4.31</h3>
Answer:
H₂ + O₂ → H₂O
Now, check that oxygen has two atoms on the left and one on the right
so, you put 2 on the right side
H₂ + O₂ → 2H₂O
oxygen is balanced so, add 2 on H₂ to balance out hydrogen
THE FINAL BALANCED EQUATION:
<h2>
2H₂ + O₂ → 2H₂O</h2>
I am also pretty sure the answer is B, but give the answer above me Brainliest. Have a great day
N2 + 3 H2 >> 2 NH3
moles NH3 = 11.50 g /17.0307 g/mol=0.6753
the ratio between H2 and NH3 is 3 : 2
moles H2 needed = 0.6753 x 3/2 =1.013
mass H2 = 1.013 mol x 2.106 g/mol=2.042 g