Answer:
The velocity of the frozen rock at
is -14.711 meters per second.
Explanation:
The frozen rock experiments a free fall, which is a type of uniform accelerated motion due to gravity and air viscosity and earth's rotation effect are neglected. In this case, we need to find the final velocity (
), measured in meters per second, of the frozen rock at given instant and whose kinematic formula is:
(Eq. 1)
Where:
- Initial velocity, measured in meters per second.
- Gravity acceleration, measured in meters per square second.
- Time, measured in seconds.
If we get that
,
and
, then final velocity is:


The velocity of the frozen rock at
is -14.711 meters per second.
Answer:

Explanation:
= Angular speed
= Distance of Mary = 11.5 ft
= Distance of Alex = 6 ft
Ratio of centripetal acceleration is given by

Mary's centripetal acceleration is 1.92 times the centripetal acceleration of Alex
Refer to the diagram shown below.
We want to find y in terms of d, φ and θ.
By definition,

Therefore
y = x tan(θ) (1)
y = (x - d) tan(φ) (2)
Equate (1) and (2).
![(x - d) \, tan(\phi) = x \, tan(\theta) \\ x[tan(\phi) - tan(\theta)] = d \, tan(\phi) \\ x= \frac{d tan(\phi)}{tan(\phi)-tan(\theta)}](https://tex.z-dn.net/?f=%28x%20-%20d%29%20%5C%2C%20tan%28%5Cphi%29%20%3D%20x%20%5C%2C%20tan%28%5Ctheta%29%20%5C%5C%20x%5Btan%28%5Cphi%29%20-%20tan%28%5Ctheta%29%5D%20%3D%20d%20%5C%2C%20tan%28%5Cphi%29%20%5C%5C%20x%3D%20%5Cfrac%7Bd%20tan%28%5Cphi%29%7D%7Btan%28%5Cphi%29-tan%28%5Ctheta%29%7D%20)
From (1), obtain the required expression for y.
Answer:
This question involves the concepts of general gas equation and pressure.
The force exerted by the gas on one of the walls of the container is "74.08 KN".
First, we will use the general gas equation to find out the pressure of the gas:

where,
P = Pressure of the gas = ?
V = Volume of cube = (side length)³ = (10 cm)³ = (0.1 m)³ = 0.001 m³
n = no. of moles = 3 (since molecules equal to avogadro's number make up 1 mole)
R = general gas constant = 8.314 J/mol.K
T = Absolute Temperature = 24°C + 273 = 297 K
Therefore,

P = 7407.78 KPa
Now, the force on one wall can be given as follows:

where,
A = area of one wall = (side length)² = (0.1 m)² = 0.01 m²
Therefore,

<u>F = 74.08 KN</u>
<u></u>
Learn more about the general gas equation here:
brainly.com/question/24645007?referrer=searchResults