Answer:
b.only when the current in the first coil changes.
Explanation:
An induced current flow in the second coil only when there is a change in current in the first cool. A steady current will produce no change in flux (due to magnetic effect of a current) by the first coil, and according to Faraday, induced current is only produced when there is a change in flux linkage.
Answer:
Therefore, the moment of inertia is:
Explanation:
The period of an oscillation equation of a solid pendulum is given by:
(1)
Where:
- I is the moment of inertia
- M is the mass of the pendulum
- d is the distance from the center of mass to the pivot
- g is the gravity
Let's solve the equation (1) for I


Before find I, we need to remember that
Now, the moment of inertia will be:
Therefore, the moment of inertia is:
I hope it helps you!
First we need to find the acceleration of the skier on the rough patch of snow.
We are only concerned with the horizontal direction, since the skier is moving in this direction, so we can neglect forces that do not act in this direction. So we have only one horizontal force acting on the skier: the frictional force,

. For Newton's second law, the resultant of the forces acting on the skier must be equal to ma (mass per acceleration), so we can write:

Where the negative sign is due to the fact the friction is directed against the motion of the skier.
Simplifying and solving, we find the value of the acceleration:

Now we can use the following relationship to find the distance covered by the skier before stopping, S:

where

is the final speed of the skier and

is the initial speed. Substituting numbers, we find:
Na is in the first column on the periodic table so therefore it would have 1 valence electron
D 1
Explanation:
The given data is as follows.
Mass of small bucket (m) = 4 kg
Mass of big bucket (M) = 12 kg
Initial velocity (
) = 0 m/s
Final velocity (
) = ?
Height
= 2 m
and,
= 0 m
Now, according to the law of conservation of energy
starting conditions = final conditions

235.44 =
+ 78.48
= 4.43 m/s
Thus, we can conclude that the speed with which this bucket strikes the floor is 4.43 m/s.