Answer is: the percent composition of Hg in the compound is 71.5%.
Balanced chemical reaction: Hg + Br₂ → HgBr₂.
m(Hg) = 60.2 g; mass of the mercury.
m(Br₂) = 24.0; mass of the bromine.
m(HgBr₂) = m(Hg) + m(Br₂).
m(HgBr₂) = 60.2 g + 24 g.
m(HgBr₂) = 84.2 g; mass of the compound.
ω(Hg) = m(Hg) ÷ m(HgBr₂) · 100%.
ω(Hg) = 60.2 g ÷ 84.2 g · 100%.
ω(Hg) = 71.5%.
Answer:

Explanation:
Given
Required
Calculate the number of moles
We'll apply the following formula to solve this question

Where

The above equation is an illustration of the ideal gas law
Substitute values for p, V, R and T in:




<em>Hence, there are 243.605 moles</em>
Answers:
Human activities badly affect carbon cycle. Activities such as burning fossil fuel and deforestation have begun to effect on carbon cycle and the rise of carbon dioxide in atmosphere.
Explanation:
The carbon cycle can be affect when carbon dioxide is either released into atmosphere or remove from atmosphere. When fossil are burnt , carbon is release to the atmosphere at faster rate then it is removed. Natural gas, oil, coal, and other industrial products all are affecting carbon cycle in atmosphere.
Deforestation means permanent removal of trees from forest which cause increase in level of carbon dioxide because no trees longer to absorb carbon dioxide from atmosphere. Which result affect on carbon cycle.
Answer:
a)
,
, b)
, 
Explanation:
a) The ideal gas is experimenting an isocoric process and the following relationship is used:

Final temperature is cleared from this expression:


The number of moles of the ideal gas is:



The final temperature is:


The final pressure is:



b) The ideal gas is experimenting an isobaric process and the following relationship is used:

Final temperature is cleared from this expression:




The final volume is:



Answer:
Pentan-2-ol
Explanation:
On this reaction, we have a <u>Grignard reagent</u> (ethylmagnesium bromide), therefore we will have the production of a <u>carbanion</u> (step 1). Then this carbanion can <u>attack the least substituted carbon</u> in the epoxide in this case carbon 1 (step 2). In this step, the epoxide is open and a negative charge is generated in the oxygen. The next step, is the <u>treatment with aqueous acid</u>, when we add acid the <u>hydronium ion</u> (
) would be produced, so in the reaction mechanism, we can put the hydronium ion. This ion would be <u>attacked by the negative charge</u> produced in the second step to produce the final molecule: <u>"Pentan-2-ol".</u>
See figure 1
I hope it helps!