The units for mass are grams (g) and kilograms (kg)
the units for volume are millilitres (ml) and litres (l)
Answer: n the laboratory, the life time of a particle moving with speed 2.8 x 10^10 cm\s is found to be 2.5 x 10^-7. Calculate the proper life of the ...
Explanation:
80000 Joule is the change in the internal energy of the gas.
<h3>In Thermodynamics, work done by the gas during expansion at constant pressure:</h3>
ΔW = -pdV
ΔW = -pd (V₂ -V₁)
ΔW = - 1.65×10⁵ pa (0.320m³ - 0.110m³)
= - 0.35×10⁵ pa.m³
= - 35000 (N/m³)(m³)
= -35000 Nm
ΔW = -35000 Joule
Therefore, work done by the system = -35000 Joule
<h3>Change in the internal energy of the gas,</h3>
ΔV = ΔQ + ΔW
Given:
ΔQ = 1.15×10⁵ Joule
ΔW = -35000 Joule
ΔU = 1.15×10⁵ Joule - 35000 Joule
= 80000 Joule.
Therefore, the change in the internal energy of the gas= 80000 Joule.
Learn more about thermodynamics here:
brainly.com/question/14265296
#SPJ4
Answer:
Moment of inertia = 0.3862kg-m²
Explanation:
2.00x10³
2.80cm
145 rad
r = r⊥ x F
F is an applied force
r⊥ is the distance between the applied force and axis
Force exerted = 2.00x10³
r⊥ = 2.8cm = 0.028m
Alpha = 145rad/s²
r = 0.028m x 2.00x10³
r = 56.0N-m
To get the moment of inertia
56.0N-m² = (145rad/s²) x I
The I would be:
I = (56.0N-m²)/(145rad/s²)
I = 56/145
= 0.3862Kg-m²
This is the moment of inertia.
Thank you!