Their linear inertia is equivalent to their masses. Let the inertia of the first moose be m₁ and the second be m₂.
m₁u + m₂u = (m₁ + m₂) x 1/3 u
3m₁ + 3m₂ = m₁ + m₂
3 m₁/m₂ + 3 = m₁/m₂ + 1
m₁/m₂ = 2
The ratio of their inertias is 2
Answer:
Coaches plan, conduct, and evaluate the team on a regular basis. They are the leaders of the team, so they help motivate the players. They are able to communicate with the athletes and determine the best learning styles for each player.
Explanation:
Answer:
= ( ρ_fluid g A) y
Explanation:
This exercise can be solved in two parts, the first finding the equilibrium force and the second finding the oscillating force
for the first part, let's write Newton's equilibrium equation
B₀ - W = 0
B₀ = W
ρ_fluid g V_fluid = W
the volume of the fluid is the area of the cube times the height it is submerged
V_fluid = A y
For the second part, the body introduces a quantity and below this equilibrium point, the equation is
B - W = m a
ρ_fluid g A (y₀ + y) - W = m a
ρ_fluid g A y + (ρ_fluid g A y₀ -W) = m a
ρ_fluid g A y + (B₀-W) = ma
the part in parentheses is zero since it is the force when it is in equilibrium
ρ_fluid g A y = m a
this equation the net force is
= ( ρ_fluid g A) y
we can see that this force varies linearly the distance and measured from the equilibrium position
D.
The reading between 7N and 8N would have to be 7.5N. Answers A and B are much to small and answer C is way to big.
5) 204 meters
6)
A) 150 miles
B)241 km