Answer:
<u>P (E1) = 1/2 or 50%</u>
<u>P (E2) = 3/13 or 23%</u>
Step-by-step explanation:
1. Let's review the information given to us to answer the question correctly:
Number of playing cards = 52
Number of suits = 4
Number of cards per suit = 13
Number of black suits = 2
Number of red suits = 2
2. Suppose E1 = the outcome is a red card and E2 = the outcome is a face card (K, Q, J). Determine P(E1 or E2).
P (E1) = Number of red cards/Total of playing cards
P (E1) = 26/52 = 1/2 = 50%
P (E2) = Number of face cards/Total of playing cards
P (E2) = 12/52 = 3/13 = 23%
outcomes of E1 = [1, 3, 5, 7, 9, 12, 14, 16, 18, 19, 21, 23, 25, 27, 30, 32, 34, 36]
outcomes of E2 = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35]
PLATO
-5
You can work backwards with this problem if that helps you.
so, what times 3 = -15
-5 times 3 = -15 so that would be the answer
Solve for xsin3⁡x+cos3⁡x=1" role="presentation" style="margin: 0px; padding: 0px; border: 0px; font-style: normal; font-variant: inherit; font-weight: normal; font-stretch: inherit; line-height: normal; font-family: inherit; font-size: 15px; vertical-align: baseline; box-sizing: inherit; display: inline; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">xsin3x+cos3x=1xsin3x+cos3x=1
sin3⁡x+cos3⁡x=1(sin⁡x+cos⁡x)(sin2⁡x−sin⁡x⋅cos⁡x+cos2⁡x)=1(sin⁡x+cos⁡x)(1−sin⁡x⋅cos⁡x)=1" role="presentation" style="margin: 0px; padding: 0px; border: 0px; font-style: normal; font-variant: inherit; font-weight: normal; font-stretch: inherit; line-height: normal; font-family: inherit; font-size: 15px; vertical-align: baseline; box-sizing: inherit; display: inline; text-indent: 0px; text-align: left; text-transform: none; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; position: relative;">sin3x+cos3x=1(sinx+cosx)(sin2x−sinx⋅cosx+cos2x)=1(sinx+cosx)(1−sinx⋅cosx)=1
r = t - u - s
To solve for r in terms of s, t, and u, means to have r on one side and have t, u, and s.
t = u - s + r
t - u = s + r
t - u - s = r