Alcoholic fermentation is mainly used by various yeast species to make energy.
If there is no oxygen available, the yeasts have in the alcoholic fermentation another possibility of energy supply. But they can - as compared with cellular respiration - recover substantially less energy from glucose, in the form of adenosine triphosphate (ATP): by complete oxidation, a molecule of glucose provides 36 molecules of ATP, but by alcoholic fermentation only 2 molecules of ATP. These two molecules are obtained in glycolysis, the first step in the chain of reactions for both cellular respiration and fermentation.
The two additional steps of the fermentation, and thus the production of ethanol serve not to make energy, but the regeneration of the NAD + cofactor used by the enzymes of glycolysis. As NAD + is available in limited quantities, it is converted by the NADH reduced state fermentation enzymes to the NAD + oxidized state by reduction of acetaldehyde to ethanol.
Answer:
Na + Cl ⇒ NaCl
Explanation:
Skeleton equation: Na + Cl ⇒ NaCl
This is already balanced so that is the answer.
Answer:
Total worth of gold in the ocean = $5,840,000,000,000,000
Explanation:
As stated in the question above, 4.0 x 10^-10 g of gold was present in 2.1mL of ocean water.
Therefore, In 1 L of ocean water there will be,
(4.0 x 10^-10)/0.0021
= 1.9045 x 10^-7 g of gold per Liter of ocean water.
So in 1.5 x 10^-21 L of ocean water, there will be
(1.9045 x 10^-7) * (1.5 x 10^-21)
= 2.857 x 10^14 g of gold in the ocean.
1 gram of gold costs $20.44, that is 20.44 dollars/gram. The total cost of the gold present in the ocean is
20.44 * (2.857 x 10^14)
= $5,840,000,000,000,000
The choices for this problem are bismuth, Bi; platinum, Pt; selenium, Se; calcium, Ca and copper, Cu. I think the correct answer would be selenium. The melting point of bismuth is at a temperature of 544.4 Kelvin. At a temperature of 525 K, it would exist as solid. Platinum melts at 2041.1 K. At 525 K, platinum would be in solid form. Selenium has a melting point at 494 K so that at a temperature of 525 K, it would exist in its liquid state. Calcium has a melting point of 1112 K so it would exist as solid at 525 K. Copper has a melting point at 1358 K, so it would still exist as solid at a temperature of 525 K. Therefore, the answer would only be selenium.