I think the answer is mercury
Given:
Iron, 125 grams
T
1 = 23.5 degrees Celsius, T2 =
78 degrees Celsius.
Required:
Heat produced in kilojoules
Solution:
The molar mass of iron is 55.8
grams per mole. SO we need to change the given mass of iron into moles.
Number of moles of iron = 125 g/(55.8
g/mol) = 2.24 moles
<span>
Q (heat) = nRT = nR(T2 = T1)</span>
Q (heat) = 2.24 moles (8.314
Joules per mol degrees Celsius) (78.0 degrees Celsius – 23.5 degrees Celsius)
<u>Q (heat) = 1014.97 Joules or
1.015 kilojoules</u>
<span>This is the amount of heat
produced in warming 125 g f iron.</span>
A beachside all objects have thermal energy but thermal energy is the sum of the energy of all the particles so the more particles the more energy.
Answer:
Explanation:
If the reaction is really exothermic (and it is) then the water would spatter all over the place. It would boil off if the container could hold it. It would also react according to the following reaction.
You are talking about a reaction like
2K + 2HOH = 2KOH + H2
Answer: There are
molecules in 63.00 g of 
Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number
of particles.
To calculate the moles, we use the equation:

1 mole of
contains =
molecules
Thus 3.5 moles of
contains =
molecules.
There are
molecules in 63.00 g of 