The range of force exerted at the end of the rope is 285.7 N to 1,000 N.
<h3>Net horizontal force of the cylinder</h3>
The net horizontal force of the cylinder when it is at equilibrium position is determined by applying Newton's second law of motion.
∑F = 0
F - μFn = 0
F - 0.2(5,000) = 0
F - 1,000 = 0
F = 1,000 N
The strength of the applied force increases as the number of turns of the rope increases.
minimum force = total force/number of turns of rope
minimum force = 1,000/3.5
minimum force = 285.7 N
Thus, the range of force exerted at the end of the rope is 285.7 N to 1,000 N.
Learn more about Newton's second law of motion here: brainly.com/question/3999427
Answer:
This is a chemical property. If iron does rust, this is a slow chemical change since rust is an iron oxide with different properties than iron metal.
Answer:
a) correct answer is C
, b) 14º from the west to the north, c) v_{1g} = 300.79 km / h
Explanation:
This is a relative speed exercise using the addition of speeds.
1) when it is not specified regarding what is being measured, the medicine is carried out with respect to the Z Earth, therefore the correct answer is C
2 and 3) In this case we must compose the speed using the Pythagorean Theorem.
² =
² +
²
where v_{1a} is the speed of the airplane with respect to the air, v_{1g} airplane speed with respect to the Earth, v_{ag} air speed with respect to the Earth
in this case let's clear the speed of the airplane with respect to the Earth
v_{1g} = √(v_{1a}² - v_{ag}²)
v_{1g} = √ (310² - 75²)
v_{1g} = 300.79 km / h
we find the direction of the airplane using trigonometry
sin θ = v_{ag} / v_{1a}
θ = sin⁻¹ (v_{ag} /v_{1a})
θ = sin⁻¹ (75/310)
θ= 14º
the pilot must direct the aircraft at an angle of 14º from the west to the north
Answer:
snowplow would be m, sun r , hb n , FB e ,and tiaa c
Answer:
Density is the amount of mass in a specified space. It is a way to measure how compact an object is
Explanation: