The correct statements are "Each orbit holds a fixed number of electrons" and "The n=1 orbit can only hold two electrons." According to the Bohr model, the maximum number of electrons that can occupy an orbit is given by
, where n is the number of the orbit. For instance, when n=1 it means
. This particular orbit can only hold up to two electrons. Even though the electrons can gain energy and move to higher orbits or electrons from higher orbits can lose energy and drop to the n=1 level, the energy level would not allow more electrons to enter the orbit once it is full. Again the octet rule, which states that atoms achieve stability by having 8 valence electrons, limits the maximum number of electrons that can be occupied by an orbit. The gain and loss of electrons is done to achieve the noble gas configuration and once that is reached no more electron can be added to an orbit
Her magnitude of deceleration on the ice would be 15.126m/s
The statement: Mass affects how fast an object falls is true.
![v'_2 = \frac{2m_1}{m_1+m_2} (4.3) - \frac{m_1-m_2}{m_1+m_2} (4.3)\\\\v'_1 = \frac{m_1-m_2}{m_1+m_2} (4.3) + \frac{2m_2}{m_1+m_2} (4.3)](https://tex.z-dn.net/?f=v%27_2%20%3D%20%5Cfrac%7B2m_1%7D%7Bm_1%2Bm_2%7D%20%284.3%29%20-%20%5Cfrac%7Bm_1-m_2%7D%7Bm_1%2Bm_2%7D%20%284.3%29%5C%5C%5C%5Cv%27_1%20%3D%20%5Cfrac%7Bm_1-m_2%7D%7Bm_1%2Bm_2%7D%20%284.3%29%20%2B%20%5Cfrac%7B2m_2%7D%7Bm_1%2Bm_2%7D%20%284.3%29)
<u>Explanation:</u>
Velocity of B₁ = 4.3m/s
Velocity of B₂ = -4.3m/s
For perfectly elastic collision:, momentum is conserved
![m_1v_1 + m_2v_2 = m_1v'_1 + m_2v'_2](https://tex.z-dn.net/?f=m_1v_1%20%2B%20m_2v_2%20%3D%20m_1v%27_1%20%2B%20m_2v%27_2)
where,
m₁ = mass of Ball 1
m₂ = mass of Ball 2
v₁ = initial velocity of Ball 1
v₂ = initial velocity of ball 2
v'₁ = final velocity of ball 1
v'₂ = final velocity of ball 2
The final velocity of the balls after head on elastic collision would be
![v'_2 = \frac{2m_1}{m_1+m_2} v_1 - \frac{m_1-m_2}{m_1+m_2} v_2\\\\v'_1 = \frac{m_1-m_2}{m_1+m_2} v_1 + \frac{2m_2}{m_1+m_2} v_2](https://tex.z-dn.net/?f=v%27_2%20%3D%20%5Cfrac%7B2m_1%7D%7Bm_1%2Bm_2%7D%20v_1%20-%20%5Cfrac%7Bm_1-m_2%7D%7Bm_1%2Bm_2%7D%20v_2%5C%5C%5C%5Cv%27_1%20%3D%20%5Cfrac%7Bm_1-m_2%7D%7Bm_1%2Bm_2%7D%20v_1%20%2B%20%5Cfrac%7B2m_2%7D%7Bm_1%2Bm_2%7D%20v_2)
Substituting the velocities in the equation
![v'_2 = \frac{2m_1}{m_1+m_2} (4.3) - \frac{m_1-m_2}{m_1+m_2} (4.3)\\\\v'_1 = \frac{m_1-m_2}{m_1+m_2} (4.3) + \frac{2m_2}{m_1+m_2} (4.3)](https://tex.z-dn.net/?f=v%27_2%20%3D%20%5Cfrac%7B2m_1%7D%7Bm_1%2Bm_2%7D%20%284.3%29%20-%20%5Cfrac%7Bm_1-m_2%7D%7Bm_1%2Bm_2%7D%20%284.3%29%5C%5C%5C%5Cv%27_1%20%3D%20%5Cfrac%7Bm_1-m_2%7D%7Bm_1%2Bm_2%7D%20%284.3%29%20%2B%20%5Cfrac%7B2m_2%7D%7Bm_1%2Bm_2%7D%20%284.3%29)
If the masses of the ball is known then substitute the value in the above equation to get the final velocity of the ball.
Answer:
Mass, M = 1000 kg
Speed, v = 90 km/h = 25 m/s
time, t = 6 sec.
Distance:
![{ \tt{distance = speed \times time }} \\ { \tt{distance = 25 \times 6}} \\ { \tt{distance = 150 \: m}}](https://tex.z-dn.net/?f=%7B%20%5Ctt%7Bdistance%20%3D%20%20speed%20%5Ctimes%20time%20%7D%7D%20%5C%5C%20%7B%20%5Ctt%7Bdistance%20%3D%2025%20%5Ctimes%206%7D%7D%20%5C%5C%20%7B%20%5Ctt%7Bdistance%20%3D%20150%20%5C%3A%20m%7D%7D)
Force:
![{ \tt{force = mass \times acceleration}} \\ { \bf{but \: for \: acceleration : }} \\ from \: second \: equation \: of \: motion : \\ { \bf{s = ut + \frac{1}{2} {at}^{2} }} \\ \\ { \tt{150 = (0 \times 6) + ( \frac{1}{2} \times a \times {6}^{2} ) }} \\ \\ { \tt{acceleration = 8.33 \: {ms}^{ - 2} }} \\ \\ { \tt{force = 1000 \times 8.33}} \\ { \tt{force = 8333.3 \: newtons}}](https://tex.z-dn.net/?f=%7B%20%5Ctt%7Bforce%20%3D%20mass%20%5Ctimes%20acceleration%7D%7D%20%5C%5C%20%7B%20%5Cbf%7Bbut%20%5C%3A%20for%20%5C%3A%20acceleration%20%3A%20%7D%7D%20%5C%5C%20from%20%5C%3A%20second%20%5C%3A%20equation%20%5C%3A%20of%20%5C%3A%20motion%20%3A%20%20%5C%5C%20%7B%20%5Cbf%7Bs%20%3D%20ut%20%2B%20%20%5Cfrac%7B1%7D%7B2%7D%20%20%7Bat%7D%5E%7B2%7D%20%7D%7D%20%5C%5C%20%20%5C%5C%20%7B%20%5Ctt%7B150%20%3D%20%280%20%5Ctimes%206%29%20%2B%20%28%20%5Cfrac%7B1%7D%7B2%7D%20%5Ctimes%20a%20%5Ctimes%20%20%7B6%7D%5E%7B2%7D%20%29%20%7D%7D%20%5C%5C%20%20%5C%5C%20%7B%20%5Ctt%7Bacceleration%20%3D%208.33%20%5C%3A%20%20%7Bms%7D%5E%7B%20-%202%7D%20%7D%7D%20%5C%5C%20%20%5C%5C%20%7B%20%5Ctt%7Bforce%20%3D%201000%20%5Ctimes%208.33%7D%7D%20%5C%5C%20%7B%20%5Ctt%7Bforce%20%3D%208333.3%20%5C%3A%20newtons%7D%7D)