Answer:
Maximum Tension=224N
Minimum tension= 64N
Explanation:
Given
mass =8 kg
constant speed = 6m/s .
g=10m/s^2
Maximum Tension= [(mv^2/ r) + (mg)]
Minimum tension= [(mv^2/ r) - (mg)]
Then substitute the values,
Maximum Tension= [8 × 6^2)/2 +(8×9.8)] = 224N
Minimum tension= [8 × 6^2)/2 -(8×9.8)]
=64N
Hence, Minimum tension and maximum Tension are =64N and 2224N respectively
Complete Question
A gas gun uses high pressure gas tp accelerate projectile through the gun barrel.
If the acceleration of the projective is : a = c/s m/s2
Where c is a constant that depends on the initial gas pressure behind the projectile. The initial position of the projectile is s= 1.5m and the projectile is initially at rest. The projectile accelerates until it reaches the end of the barrel at s=3m. What is the value of the constant c such that the projectile leaves the barrel with velocity of 200m/s?
Answer:
The value of the constant is 
Explanation:
From the question we are told that
The acceleration is 
The initial position of the projectile is s= 1.5m
The final position of the projectile is 
The velocity is 
Generally 
and acceleration is 
so

=> 

integrating both sides

Now for the limit
a = 200 m/s
b = 0 m/s
c = s= 3 m
d =
= 1.5 m
So we have

![[\frac{v^2}{2} ] \left | 200} \atop {0}} \right. = c [ln s]\left | 3} \atop {1.5}} \right.](https://tex.z-dn.net/?f=%5B%5Cfrac%7Bv%5E2%7D%7B2%7D%20%5D%20%5Cleft%20%7C%20200%7D%20%5Catop%20%7B0%7D%7D%20%5Cright.%20%20%3D%20c%20%5Bln%20s%5D%5Cleft%20%7C%203%7D%20%5Catop%20%7B1.5%7D%7D%20%5Cright.)
![\frac{200^2}{2} = c ln[\frac{3}{1.5} ]](https://tex.z-dn.net/?f=%5Cfrac%7B200%5E2%7D%7B2%7D%20%20%3D%20%20c%20ln%5B%5Cfrac%7B3%7D%7B1.5%7D%20%5D)
=> 

This contraption is a lot of fun, and you really should try it
some time.
The sound waves move from one can to the other one
by traveling through the string.
Answer:
v = 14.32 m/s
Explanation:
According to the principle of conservation of linear momentum, both the momentum and kinetic energy of the system are conserved. Since the two balls are in the same direction of motion before collision, then;
+
= (
+
) v
0.035 × 12 + 0.120 × 15 = (0.035 + 0.120) v
0.420 + 1.800 = (0.155) v
2.22 = 0.155 v
⇒ v = 
= 14.323
The velocity of the balls after collision is 14.32 m/s.