Answer:
Present in both catabolic and anabolic pathways
Explanation:
Glyceraldehyde-3-phosphate abbreviated as G3P occurs as intermediate in glycolysis and gluconeogenesis.
In photosynthesis, it is produced by the light independent reaction and acts as carrier for returning ADP, phosphate ions Pi, and NADP+ to the light independent pathway. Photosynthesis is a anbolic pathway.
In glycolysis, Glyceraldehyde-3-phosphate is produced by breakdown of fructose-1,6 -bisphosphate. Further Glyceraldehyde-3-phosphate converted to pyruvate and pyruvate is further used in citric acid cycle for energy production. Therefore, it is used in catabolic pathway too.
Glyceraldehyde-3-phosphate is an important intermediate molecule in the cell's metabolic pathways because it is present in both catabolic and anabolic pathways.
Answer:
However, when formal units are used to measure length, the measurement can usually be read from a scale on a ruler or tape, which shows units of a particular size. Unit iteration involves knowledge of repeatedly placing identical tightly packing units so that there are no overlaps or gaps.
Explanation:
1.01 x 10^24 molecules.
Explanation:
To calculate the number of molecules in a given number of mole, we can simply multiply by Avogadro's number which is equal to 6.022 x 10 ^23.
Therefore,
10 molecules = 1.68 mol x (6.022 x 10^23 molecules) / (1 mol = 1.01 x 10^24) molecules.
I hope this helps :)
Answer: 9.68 x 10^10 grams.
Explanation:
Given that:
Mass of CO2 = ?
Number of molecules of CO2 = 2.2x10^9 molecules
Molar mass of CO2 = ? (let unknown value be Z)
For the molar mass of CO2: Atomic mass of Carbon = 12; Oxygen = 16
= 12 + (16 x 2)
= 12 + 32 = 44g/mol
Apply the formula:
Number of molecules = (Mass of CO2 in grams/Molar mass)
2.2x10^9 molecules = Z/44g/mol
Z = 2.2x10^9 molecules x 44g/mol
Z = 9.68 x 10^10g
Thus, the mass of 2.2x10^9 molecules of CO2 is 9.68 x 10^10 grams.
Answer:
all cells are produced from other preexisting cells through cell division