Answer:
The standard cell potential of the reaction is 0.78 Volts.
Explanation:

Reduction at cathode :
Reduction potential of
to Cu=
Oxidation at anode:

Reduction potential of
to Fe=
To calculate the
of the reaction, we use the equation:

Putting values in above equation, we get:

The standard cell potential of the reaction is 0.78 Volts.
Answer:
can you send me a picture of what layer a and look b look like and then I will be able to evaluate
Answer:
–0.16 m
Explanation:
From the question given above, the following data were obtained:
Time (t) = 0.18 s
Acceleration due to gravity (g) = –9.81 m/s²
Height (h) =?
We can obtain how far the ruler will fall by using the following equation:
H = ½gt²
H = ½ × –9.81 × 0.18²
H = ½ × –9.81 × 0.0324
H = –0.16 m
Thus, the ruler will fall –0.16 m before you will catch it.
Answer: Percent recovery is 47.34 %
Explanation:
Percent yield is defined as the ratio of experimental yiled to theoretical yield in terms of percentage.

Putting in the values we get:

Therefore, the percent recovery is 47.34 %
Answer:
0.208mole of CO2
Explanation:
First, let us calculate the number of mole of HC3H3O2 present.
Molarity of HC3H3O2 = 0.833 mol/L
Volume = 25 mL = 25/100 = 0.25L
Mole =?
Mole = Molarity x Volume
Mole = 0.833 x 0.25
Mole of HC3H3O2 = 0.208mole
Now, we can easily find the number of mole of CO2 produce by doing the following:
NaHCO3 + HC2H3O2 → NaC2H3O2 + H2O + CO2
From the equation,
1mole of HC2H3O2 produced 1 mole of CO2.
Therefore, 0.208mole of HC2H3O2 will also produce 0.208mole of CO2