-20.16 KJ of heat are released by the reaction of 25.0 g of Na2O2.
Explanation:
Given:
mass of Na2O2 = 25 grams
atomic mass of Na2O2 = 78 gram/mole
number of mole = 
= 
=0. 32 moles
The balanced equation for the reaction:
2 Na2O2(s) + 2 H2O(l) → 4 NaOH(aq) + O2(g) ∆Hο = −126 kJ
It can be seen that 126 KJ of energy is released when 2 moles of Na2O2 undergoes reaction.
similarly 0.3 moles of Na2O2 on reaction would give:
= 
x = 
= -20.16 KJ
Thus, - 20.16 KJ of energy will be released.
Answer:
Explanation:
0
All the charges of the protons are cancelled out by all the charges on the electrons.
The number of bonds for a neutral atom is equal to the number of electrons in the full valence shell (2 or 8 electrons) minus the number of valence electrons. This method works because each covalent bond that an atom forms adds another electron to an atoms valence shell without changing its charge.
Answer:
The concentration of this sodiumhydroxide solutions is 0.50 M
Explanation:
Step 1: Data given
Mass of sodium hydroxide (NaOh) = 8.0 grams
Molar mass of sodium hydroxide = 40.0 g/mol
Volume water = 400 mL = 0.400 L
Step 2: Calculate moles NaOH
Moles NaOH = mass NaOH / molar mass NaOH
Moles NaOH = 8.0 grams / 40.0 g/mol
Moles NaOh = 0.20 moles
Step 3: Calculate concentration of the solution
Concentration solution = moles NaOH / volume water
Concentration solution = 0.20 moles / 0.400 L
Concentration solution = 0.50 M
The concentration of this sodiumhydroxide solutions is 0.50 M