Answer:
24cm/s
Explanation:
A=L*w
A'=L'*w'
L=13
w=5
L'=4
w'=6
A=?
A'=?
A=L*w
A=13*5
A=65
A'=L'*w'
A'=4*6
A'=24
*the given lengths are just to throw you off*
Answer:
Let I and j be the unit vector along x and y axis respectively.
Electric field at origin is given by
E= kq1/r1^2 i + kq2/r2^2j
= 9*10^9*1.6*10^-19*/10^-6*(2i+ j)
= (2.88i + 1.44j)*10^-3 N/C
Force on charge= qE= 3*10^-19*1.6*(2.88i +1. 44 j) *10^-3
F= (1.382 i + 0.691 j) *10^-21
Goodluck
Explanation:
Answer:
1.92 J
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 200 Kg
Spring constant (K) = 10⁶ N/m
Workdone =?
Next, we shall determine the force exerted on the spring. This can be obtained as follow:
Mass (m) = 200 Kg
Acceleration due to gravity (g) = 9.8 m/s²
Force (F) =?
F = m × g
F = 200 × 9.8
F = 1960 N
Next we shall determine the extent to which the spring stretches. This can be obtained as follow:
Spring constant (K) = 10⁶ N/m
Force (F) = 1960 N
Extention (e) =?
F = Ke
1960 = 10⁶ × e
Divide both side by 10⁶
e = 1960 / 10⁶
e = 0.00196 m
Finally, we shall determine energy (Workdone) on the spring as follow:
Spring constant (K) = 10⁶ N/m
Extention (e) = 0.00196 m
Energy (E) =?
E = ½Ke²
E = ½ × 10⁶ × (0.00196)²
E = 1.92 J
Therefore, the Workdone on the spring is 1.92 J
Answer:
Let's start by understanding what exactly a scientific question is. A scientific question is a question that may lead to a hypothesis and help us in answering (or figuring out) the reason for some observation. A good scientific question has certain characteristics. It should have some answers (real answers), should be testable.
Here's examples of a few:
Why is that a star?
or
What is that star made of?
Hope this can lead you to the answer you're looking for at least!!
Answer:
k = 11,564 N / m, w = 6.06 rad / s
Explanation:
In this exercise we have a horizontal bar and a vertical spring not stretched, the bar is released, which due to the force of gravity begins to descend, in the position of Tea = 46º it is in equilibrium;
let's apply the equilibrium condition at this point
Axis y
W_{y} - Fr = 0
Fr = k y
let's use trigonometry for the weight, we assume that the angle is measured with respect to the horizontal
sin 46 =
/ W
W_{y} = W sin 46
we substitute
mg sin 46 = k y
k = mg / y sin 46
If the length of the bar is L
sin 46 = y / L
y = L sin46
we substitute
k = mg / L sin 46 sin 46
k = mg / L
for an explicit calculation the length of the bar must be known, for example L = 1 m
k = 1.18 9.8 / 1
k = 11,564 N / m
With this value we look for the angular velocity for the point tea = 30º
let's use the conservation of mechanical energy
starting point, higher
Em₀ = U = mgy
end point. Point at 30º
= K -Ke = ½ I w² - ½ k y²
em₀ = Em_{f}
mgy = ½ I w² - ½ k y²
w = √ (mgy + ½ ky²) 2 / I
the height by 30º
sin 30 = y / L
y = L sin 30
y = 0.5 m
the moment of inertia of a bar that rotates at one end is
I = ⅓ mL 2
I = ½ 1.18 12
I = 0.3933 kg m²
let's calculate
w = Ra (1.18 9.8 0.5 + ½ 11,564 0.5 2) 2 / 0.3933)
w = 6.06 rad / s