thermal energy is the correct answer of number 7
Yes, if the mass starts at rest, <u>the change in speed will be equal the final speed</u>, because:
Δv = Vf - Vo
How Vo (Initial velocity) is equal zero, we simplificate:
Δv = Vf
Then, the change of the speed, if the mass starts at rest, will be equal to final velocity.
Greetings.
Answer:
3.95 m
Explanation:
m = 1 kg, h = 100 m, k = 125 N/m
Let the spring is compressed by y.
Use the conservation of energy
potential energy of the mass is equal to the energy stored in the spring
m x g x h = 1/2 x ky^2
1 x 9.8 x 100 = 0.5 x 125 x y^2
y^2 = 15.68
y = 3.95 m
His weight depends on where he is, because
Weight = (mass) x (gravity in the place where the mass is) .
For example:
-- If this man is on Mars, his weight is (110 kg) x (3.7 m/s²) = 408 Newtons
-- If he is on the Moon, his weight is (110 kg) x (1.6 m/s²) = 176 Newtons
-- If he is on Earth, his weight is (110 kg) x (9.8 m/s²) = 1,078 Newtons
-- If he is in a spacecraft coasting from one to another, his weight is zero.