The statement which best describes how light waves travel in an uniform medium is in straight lines. The correct answer will be A.
Answer:
The sphere C carries no net charge.
Explanation:
- When brougth close to the charged sphere A, as charges can move freely in a conductor, a charge equal and opposite to the one on the sphere A, appears on the sphere B surface facing to the sphere A.
- As sphere B must remain neutral (due to the principle of conservation of charge) an equal charge, but of opposite sign, goes to the surface also, on the opposite part of the sphere.
- If sphere A is removed, a charge movement happens in the sphere B, in such a way, that no net charge remains on the surface.
- If in such state, if the sphere B (assumed again uncharged completely, without any local charges on the surface), is touched by an initially uncharged sphere C, due to the conservation of charge principle, no net charge can be built on sphere C.
Answer:
increase.
Explanation:
According to the newton’s second law of motion force is expressed as product of mass and acceleration.
F = m a
If the force acting is constant, then.
m∝ 
That is if the mass of object increases the acceleration decreases and vice versa. The above equation is used when the force acting on the body is constant.
As the thrust force from the rocket engine is constant throughout there will be a variation in the mass or acceleration.
Thus, it won't stay the same.
As the weight of the car is maximum at the start because of the fuel present in the rocket engine and minimum at the end as the fuel burns throughout the journey of the car. Weight will be minimum at the end and hence acceleration is maximum at the end.
Thus, it won't decrease.
As the acceleration is going from minimum at the start to maximum at the end, therefore it is continuously increases throughout its journey.
Thus, it will increase.
Both are constants used in the definition of Forces (gravitational and electric,respectively)
Since those constants are proportional to the magnitude of the forces:
Having a small gravitational constant explains why there is no apparent force of attraction with objects of considerable low mass (they would need to have great value of mass for the equation to give an apreciable force)
Electrical interactions are usually strong, and thus require an appropiate constant to depict the phenomenon. We deal in this case with charges really small, but the forces are in different order of magnitude.
When the two-vehicle collides transformation of the energy is done in terms of kinetic energy.
<h3>What is the law of conservation of energy?</h3>
According to the Law of Conservation of Energy, energy can neither be created nor destroyed, but it can be transferred from one form to another.
The total energy is the sum of all the energies present in the system. The potential energy in a system is due to its position in the system.
In the above problem, the Vehicle get collides so that the kinetic energy of the vehicle is converted into the kinetic energy of another vehicle the speed of the vehicle will reduce when they collide.
Momentum also gets conserved when the two vehicles collide.
Hence, the transformation of the energy is done in terms of kinetic energy.
To learn more about the law of conservation of energy, refer to brainly.com/question/2137260.
#SPJ1