Answer: The height (position) of the ball and the acceleration due gravity
Explanation:
In this case we are taking about gravitational potential energy, which is the energy a body or object possesses, due to its position in a gravitational field. In this sense, this energy depends on the relative height of an object with respect to some point of reference and associated with the gravitational force.
In the case of the Earth, in which the gravitational field is considered constant, the gravitational potential energy
will be:
Where:
is the mass of the ball
is the acceleration due gravity (assuming the ball is on the Earth surface)
is the height (position) of the ball respect to a given point
Note the value of the gravitational potential energy is directly proportional to the height.
The flashlight depends on batteries, the batteries contain chemical energy. When the flashlight turns on, there was also thermal energy caused by the heat of the lighting
<h2>
Answer: False</h2>
Explanation:
This sentence is the description of the mechanical energy.
In this sense, the mechanical energy of a body or a system is that which is obtained from the speed of its movement (kinetic energy) or its specific position (potential energy), in order to produce a mechanical work.
That is to say: The mechanical energy involves both the kinetic energy and the potential energy (which can be elastic or gravitational, for example).
In addition, it should be noted that mechanical energy is<u> conserved in conservative fields and is a scalar magnitude.</u>
Therefore:
<h2>The sum of potential and kinetic energies in the particles of a substance is called <u>Mechanical Energy</u></h2>
200 miles from a nation's coast